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1 Introduction

There is now a great deal of interest in parameter estimation of Ornstein-Uhlenbeck processes with frac-
tional driving noise in finance because of its modelling capability (see e.g. [1, 3]). That is why we investigate
prediction of the unknown parameters of certain transformed fractional Ornstein-Uhlenbeck processes, e.g.
Stochastic Correlation Processes, with neural networks in the hope that we will obtain more accurate es-
timators than the ones using classical statistic methods, without any assumptions on the Hurst exponent.
As it will be precisely introduced in the second section, the published parameter estimators based on clas-
sical statistics possess such large asymptotic variance, which reduces their applicability, especially for the
parameters chosen close to zero. The importance of an efficient data generator system for each analysed
process rises high in this case, since if huge and complex neural network structures are applied in the learning
procedure, then one needs a big amount of data for a good performance.

If one aims at simulating stochastic integrals with respect to fractional Wiener process, first of all an
efficient fractal noise generator has to be developed. Several exact methods have been published about
simulating fractional Wiener processes, e.g. the Cholesky and the Hosking method [6], which will be precisely
determined in the third section. It will be shown that the circulant embedding based algorithms, such as
[9, 12, 13], perform the most efficiently among the exact methods according to the main advantage derived
from their complexity of order O(N logN), where N denotes the number of grid points used in generation.
All of the mentioned methods focus on calculating the square root of the covariance matrix, in the least
computionally demanding way, to obtain a realization of fractional Wiener increments. Because of its
efficiency, the idea developed by Davies and Harte [7] will be generalised for simulating isonormal integrals.

An efficient circulant matrix embedding method based isonormal integral simulator will be introduced,
which can be applied for generating fractional Ornstein-Uhlenbeck processes with zero initial value. A Python
library has been implemented for isonormal integral simulation and several comparisons as well as tests has
been evaluated for different parameter sets. Even the generalised task, i.e. considering arbitrary isonormal
processes instead of Wiener integrals, needs eight-times less execution time for simulating 10000 fractional
Ornstein-Uhlenbeck sequences over 1500 grid-points then Kroese’s method [13], which is four-times faster
then the standard Davies-Harte method [7].

2 Parameter Estimation of Fractional Ornstein-Uhlenbeck
Processes

As there are the many parameter configuration options, the Ornstein-Uhlenbeck processes have several
use cases in mathematical finance. If one aims at adjusting the long- and short-term dependencies of the
driving noise, then fractional noise driven processes could be taken into account. One of the applications of
fractional Ornstein-Uhlenbeck processes is modelling the correlation between two stock prices with stochastic
correlation processes, which can be obtained as a transformed fractional Ornstein-Uhlenbeck process, e.g.
by applying hyperbolic tangent function. That is why accurate estimators of stochastic correlation processes
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are getting more and more important in finance. This work is a part of the research about the parameter
estimation of stochastic processes with deep learning methods.

Let me consider the fractional Ornstein-Uhlenbeck process as the pathwise unique solution of the following
stochastic differential equation with ξ0 ∈ R initial value

dξt = −αξtdt + σdW
H
t , (1)

where the σ diffusion parameter and the α drift parameter have to be positive real numbers, WH
t with

H ∈ [0,1] Hurst exponent is a fractional Wiener process in its natural filtration, i.e. Ft = σ({W
H
t , t ≥ 0}).

One can intuitively think about fractional Wiener processes as the generalisation of the standard Wiener noise
with the opportunity of configuring the structure of the noise process by adjusting the remaining amount of
information from the past at time encoded into the process. It will be precisely defined in the next section.
Fractional Ornstein-Uhlenbeck processes can be considered in more general form, e.g. by adding the mean-
reversion parameter, or assuming that the diffusion parameter is not constant. The learning capability of
the investigated neural network structures is the reason for this choice. First of all, we aim at building up
accurate and consistent models for the simple cases and as the representability of the applied networks are
rising, the more abstract processes will be under investigation.

Consider the drift parameter estimation of the stochastic process given by (1), which was deeply investi-
gated by Hu and Nualart [2] in case of arbitrary Hurst exponent from the [0,1] interval. The Least Square
Estimation of the drift parameter can be written in the following form

α̂T ≐ −
∫

T
0 ξt dξt

∫
T
0 ξ2t dt

= α − σ
∫

T
0 ξt dW

H
t

∫
T
0 ξ2t dt

,

where the integral with respect to WH
t is interpreted in Skorohod sense. If one aims at estimating the drift

parameter in case of discretely observed fractional Ornstein-Uhlenbeck processes, then the error caused by
the discretization of the continuous process can rise high. For discrete time series in (1) there is a consistent
ergodic type estimator [2], which is defined as following:

αn ≐ (
1

nσ2HΓ(H)

n

∑
k=1

ξ2kh)

− 1
2H

, (2)

where it is assumed that the ξt has been observed in discrete time points {tk = kh ∶ k = 0,1, ..., n}. The
following theorem shows the asymptotic consistency of the estimator given by (2).

Theorem 1. Assume the fractional Onrstein-Uhlenbeck process ξ is given by (1) is observed at discrete time
points {tk = kh ∶ k = 0,1, ..., n}. Suppose that h depends on the number of observations n as n Ð→∞, h goes
to 0 and nh converges to ∞. αn converges to α almost surely as n Ð→ ∞, if some assumptions on h and n
hold true, which can be found in [2].

The asymptotic variance of the estimator (2) is lower bounded by 4.5 and it flies away when the Hurst
exponent is greater than 0.7, which reduces the applicability of the estimator, especially for small drift pa-
rameters. That is why the interest for consistent estimators rises high, with reasonable asymptotic variance,
of discrete stochastic processes. We aim at investigating neural network estimators with the previous prop-
erties, hence an efficient data generator system for each transform of processes given by (1) is indispensable
in this case. In case huge and complex neural network structures are teached, then a large amount of data
is needed for a good performance.

3 Generator Systems for Fractional Wiener Processes

The Fractional Wiener process, which was developed by Mandelbrot [5], can be interpreted as the generali-
sation of the standard Wiener process in the sense that the long- and short-term dependency of the process
can be adjusted by adding the Hurst exponent to the concept. The definition and some basic properties of
fractional Wiener processes, needed to the investigation of simulating fractal noise, will be introduced below.
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A {WH
t , t ≥ 0} fractional Wiener process is defined as a centered Gaussian process with the following

covariance structure

cov(WH
s ,W

H
t ) =

1

2
(t2H + s2H − ∣t − s∣2H),

where the H Hurst exponent has to be an element of the (0,1) interval.

Remark. Note that determining the mean value and the covariance structure is enough to specify the distri-
bution of a Gaussian process, which means in this case that the distribution of a fractional Wiener process
is unique for fixed Hurst exponent.

Lemma 1. As a corollary of the Kolmogorov-Chentsov continuity theorem, fractional Wiener processes have
continuous modification with probability 1. Moreover, for any γ ∈ (0, h) this modification is γ-Hölder
continuous.

Remark. The increment process of (WH
t )t≥0 is stationary, i.e. WH

t −W
H
s

d
=WH

t+h −W
H
s+h for any h ≥ 0. The

fractional Wiener process has the H-self-similarity property, i.e. WH
ct

d
= cHWH

t , t ≥ 0 for any fixed c > 0.

Consider the task of generating discrete trajectories of fractional Wiener processes, {WH
t ∶ t ∈ [0, T ]},

for a given Hurst exponent, H ∈ [0,1]. Let me define the following operator to simplify the notations
T ∶ R ×N ×C1([0, τ])Ð→ R, which is

T (τ,N , ζ(.)) ≐ {ζ(t)1t= kτ
N

}

N

k=0
. (3)

Therefore, the discretized noise process, {ŴH
t }t∈[0,T ], with respect to the given Hurst exponent and time

interval, can be obtained by taking the equidistant partition of the given time scale, [0, T ], and the fractional
Wiener process by applying the previously defined T operator, i.e.

{ŴH
t (ω)}t∈[0,t] ≐ T (T,N,W

H
(ω, .)).

Since the values {ŴH
t }t∈[0,T ] form a Gaussian vector with a certain covariance matrix, they can be simulated

by applying the corresponding linear transform onto a sequence of independently sampled standard normal
variables.

In case of simulating fractional Wiener process, the H-self-similarity property of the matter in hand
process can be taken into account to simplify the generator procedure by reducing an arbitrary time scale

to the [0,1] interval, i.e. a simulated {ŴH
t }t∈[0,1] = (

N
T
)
H
{ŴH

t }t∈[0,T ] in distribution. This observation
leads us to the amended task of generating fractional Wiener process with respect to the [0,1] time scale.
It is also well-known that the increments of WH

t form a stationary Gaussian process, which leads us to the
idea of rather simulating the increments and taking the cumulative sum of them to obtain the process than
generating the actual process. Let me introduce an operator for taking the increments of a certain process
over a partition of a given interval, I ∶ R ×N × RÐ→ RN , which can be formalised as

I(τ,N , ζ(.)) ≐ {T (τ,N , ζ(.))(1t= kτ
N

− 1
t= (k−1)τ

N

)}

N

k=1
. (4)

Remark. The task of simulating discrete fractional Wiener processes with respect to the given arbitrary time
scale has been reduced to generating over the unit interval, since the time attribute of the fractional Wiener
process can be scaled into the unit interval by a constant, depending only on the ratio of the time interval
lengths and on the corresponding Hurst exponent, thus obtaining an equality in distribution between the
primary and the scaled time series. To be more precise it is enough to come up with a simulation procedure
for I(1,N,WH(ω, .)) because of the fact that the following equation holds

(
N

T
)

H

I(1,N,WH
(ω, .)) = I(T,N,WH

(ω, .)).

Consider the covariance structure of the stationary time series given by {ηi}
N
i=1 ≐ I(1,N,W

H(ω, .)), which
can be written as following by the definition of the fractional Wiener process:

Ψ
(1,k)
WH ≐ ⟨η1;ηk+1⟩L2(Ω) =

1

2
((k + 1)2H + ∣k − 1∣2H + 2k2H).
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Since ηn is a Gaussian sequence and the covariance matrix is positive definite, (ηn) can be written as

η = ψ
1
2 ε, (5)

where ε ≐ (ε1, ..., εN)
T is an independently sampled vector with standard normal distribution. The equation

(5) instantly leads us to the first fractional Wiener noise generator method.

3.1 Cholesky Method

Since ΨWH is a symmetric positive definite matrix, it admits the Cholesky decomposition ΨWH = LLT ,
where L = (lij)i,j=1,...,N is a lower triangular matrix, which decomposition is unique in this case, since the
covariance matrix is real and positive definite. So rewrite the condition in the coordinate-wise form:

j

∑
k=1

liklkj = Ψ
(1,i−j+1)
WH . (6)

The elements of L can be computed recursively based on the previously calculated elements according to the
(6) equation, i.e. lij can be determined for i ≤ j. For i = 1 the value of l11 is actually the variance, which is
1 in this case. It can be solved easily that for an arbitrary n + 1 ≥ 3 row the elements can be determined as
following:

ln+1,1 = Ψ
(1,n+1)
WH ; ln+1,j = l

−1
jj (Ψ

(1,n+1−j)
WH −

j

∑
k−1

ln+1,klj,k).

As soon as the matrix L has been determined, the increment process, (ηn)
N
n=1 = I(1,N,W

H(ω, .)), can be
simulated according to the equation (5), i.e. ηm = ∑

m
i=1 εilmi.

3.2 Hosking Method

Note that the square root of the ΨWH covariance matrix can be computed more efficiently, since the matter in
hand I(1,N,WH(ω, .)) forms a stationary sequence, therefore the covariance structure is a Toeplitz matrix.
In this subsection Hosking’s method will be introduced, which was investigated for simulating stationary
Gaussian sequence in a less computationally demanding way than the standard Cholesky method. Let me
introduce the following notations:

γn ≐

⎛
⎜
⎜
⎜
⎜
⎝

Ψ
(1,2)
WH

Ψ
(1,3)
WH

⋮

Ψ
(1,n+1)
WH

⎞
⎟
⎟
⎟
⎟
⎠

, Jn ≐ ITn ,

where In denotes the n×n dimensional identity matrix. In case ΨWH ,(N) is given, the ΨWH ,(N+1) covariance

matrix of the sequence I(1,N +1,WH(ω, .)) can be written in two forms based on the previously introduced
notations:

ΨWH ,(N+1) = (
1 γTn
γn ΨWH ,(N)

) = (
ΨWH ,(N) Jnγn
γTn Jn 1

) . (7)

Recall, that (ηn)
N+1
n=1 denoted I(1,N + 1,WH(ω, .)). The conditional distribution of ηn+1 given η1, ..., ηn can

be obtained by applying the normal correlation theorem, i.e.

µn = E[ηn+1∣η1, ..., ηn] = γ
T
nΨ

−1
WH ,(N)

⎛
⎜
⎜
⎜
⎝

η1
η2
⋮

ηn

⎞
⎟
⎟
⎟
⎠

σ2
n = D2

[ηn+1∣η1, ..., ηn] = 1 − γ
T
nΨ

−1
WH ,(N)γn.

4



However, calculating the inverse of ΨWH ,(N) is a computationally expensive procedure, the result obtained
above makes it possible to simulate η1, η2, ..., ηn subsequently.

As an efficient stationary Gaussian sequence simulation, taking advantage of calculating Ψ−1WH ,(N) recur-

sively, Hosking’s method will be described above in a slightly different form published [9]. In order to simplify
the notations in the presentation of the method, let me denote dn ≐ Ψ

−1
WH ,(N)γn. The second representation

of ΨWH ,(N+1) formalised in (7) leads us to the following equation by applying block matrix inversion:

Ψ−1WH ,(N+1) =
1

σ2
n

(
σ2
nΨ
−1
WH ,(N) + Jndnd

T
nJn −Jndn

−dTnJn 1
)

The following recursive forms can be obtained for dn and σ2
n by applying block matrix multiplication:

dn+1 = (
dn − ϕnJndn

ϕn
) , σ2

n+1 = σ
2
n −
(ϕn)

2

σ2
n

, (8)

where

tn ≐ d
T
nJnγn, ϕn ≐

Ψ
(1,n+2)
WH ,(N) − tn

σ2
n

,

where the calculation steps not presented here can be found with description in [10].
The result formalised in (8) allows us to generate η1, ..., ηn according to the method described above. For

the first step, one simulates a standard normal variable to declare the first element of the sequence, η1, then
the previously introduced corresponding variables have to be calculated as follows

µ1 ≐ Ψ
(1,2)
WH ,(N)η1; σ2

1 ≐ 1 − (Ψ
(1,2)
WH ,(N))

2
;

t1 ≐ (Ψ
(1,2)
WH ,(N))

2
; d1 ≐ (Ψ

(1,2)
WH ,(N)).

Suppose that the nth values have been determined, then the (n+1)th element of the sequence can be obtained
as ηn ∼ N(µn, σ

2
n), while the tn, ϕn and dn+1 auxiliary variables can be computed as described in (8). The last

step of the algorithm consists of calculating the variance σ2
n+1 and the mean value µn+1 ≐ d

T
n+1(ηn+1, ..., η1)

T

of the next element in the sequence with respect to the previously calculated auxiliary variables. As in the
Cholesky method, the fractional Wiener process can be obtained as the cumulative sum of the simulated
increment process (ηn)

N
n=1 = I(1,N,W

H(ω, .)).

3.3 Davies-Harte Method

As the previous methods, the method developed by Davies and Harte [7] also focuses on finding the square
root of ΨWH by taking circulant matrix embedding into account. Note that this algorithm was proposed by
Davies and Harte and was generalized by Wood and Chan [8] and later by Dietrich and Newsam [9] according
to [10]. The main idea of the method is embedding the ΨWH ,(N) covariance matrix in the circulant covariance
matrix, C, which algorithm is based on the following theorem [10]. Since I aim at generalising this idea to
obtain a discrete isonormal integral simulator, the embedding procedure will be precisely introduced in the
next section.

Theorem 2. The C circulant matrix with M ×M dimensions has a representation C = QΛQ∗, where

Λ = diag(λ0, λ1, ..., λM − 1), λk =
M−1
∑
j=0

cjexp{−2πi
jk

M
}

is the diagonal matrix of eigenvalues of C, and the matrix Q is defined as

Q = (qjk)
M−1
j,k=0, qjk =

1
√
M

exp{−2πi
jk

M
},

and Q∗ denotes the conjugate transpose of Q.
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Recall, that in order to simulate Gaussian noise, one need to find the square root matrix of the covariance
matrix, i.e. ψψT = ΨWH ,(N), then the I(1,N,WH(ω, .)) increment sequence of fractional Wiener process can

be determined by multiplying the matrix ψ with a standard normal vector (ε1, ..., εN)
T . The main advantage

of this method can be derived from its complexity of order O(N logN), which made it probably the most
efficient among the exact methods [11]. Note that several circulant embedding methods have already been
published, see e.g. [9, 12, 13].

The chart above shows the result of the execution time simulating discrete fractional Wiener processes
with respect to the Hurst parameter interval [0.01,0.03], i.e. I(1,1500,WH(ω, .)), according to the intro-
duced Cholesky, Hosking and Davies-Harte methods. As mentioned before the [0.01,0.03] interval for the
Hurst exponent of fractal noise is one of the most relevant in mathematical finance, especially in the inves-
tigation of the time-dependent correlation of given stock prices. So as expected, the circulant embedding
based method, in this case the Davies-Harte, is outstanding in the execution time of simulating 10 sequences
with 1500 grid points over the [0.01,0.03] Hurst interval, compared to the Cholesky and Hosking methods.

4 Stochastic Integrals According to Generalised Noise

As it has been mentioned before, the main goal of my investigation in developing an efficient generator
system for transformed fractional Ornstein-Uhlenbeck processes was the necessity of a fast and accurate
data-generating method for teaching deep neural networks to estimate the parameters of certain Stochastic
Correlation Processes. But why should be developed a limited simulating system which can generate certain
fractional integrals? What would happen if the driving noise was as assumed just being isonormal process
instead of fractional Wiener process. Additionally, if discretized multidimensional isonormal integrals can be
simulated, then one can approximate the Wiener-Ito chaos decomposition of any square-integrable stochastic
process from L2(Ω× [0, T ]). These ideas will be formalised in the following subsections and also an efficient
discretized isonormal integral generator method will be introduced. In order to investigate the mentioned
tasks a short part of Malliavin calculus will be introduced according to [15].

4.1 Simulating Isonormal Integrals

Suppose that H is a separable Hilbert space with the ⟨., .⟩H inner product and with the ∣∣.∣∣H norm induced
by the inner product.
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We say that a stochastic process ζ = {ζ(h), h ∈ H} defined in a complete probability space (Ω,F ,P) is
an isonormal process on H if ζ is a centered Gaussian family of random variables such that

⟨ζ(h), ζ(g)⟩L2(Ω) = ⟨h, g⟩H. (9)

According to Kolmogorov’s theorem, for a given H Hilbert-space there can be constructed a complete
probability space and a Gaussian process {ζ(h)}h∈H verifying the following property: the corresponding
mapping h Ð→ ζ(h) provides a linear isometry of H onto a closed subspace of L2(Ω,F ,P) containing zero-
mean Gaussian variables, which will be denoted by H1.

Let me consider a special case of the previously introduced mapping, since the processes - the generator
system will be investigated for - belong to this special class where let H be a subspace of L2([0, T ]) and let
the mapping defined as

hÐ→ ζ(h) ≐ ∫
T

0
h(s)dζs, (10)

where {ζ(h)}h∈H is an isonormal processes over H. Thus, integrals for square-integrable deterministic func-
tions with respect to isonormal process have been defined in (10).

If one aims at simulating discretized stochastic integrals with respect to an almost surely continuous
process, then the issue one has to face is generating discretized pathwise Riemann-Stieltjes integrals, which
simplifies the procedure to just calculating the Riemann-Stieltjes sum according to the considered stochastic
integral, i.e.

∫

T

0
h(s)dζ(ω)s Ð→ I(T,N,∫

T

0
h(s)dζ(ω)s),

where I(τ,N , ϕ(.)) operator was defined in (4) as {T (τ,N , ϕ(.))(1t= kτ
N

−1
t= (k−1)τ

N

)}

N

k=1
. Therefore, I aim at

simulating I(T,N, ∫
T
0 h(s)dζ(ω)s) efficiently. Recall, that in case of simulating fractional Wiener processes,

the fastest exact methods are the circulant matrix embedding based algorithms. Thus, for discretized
isonormal integrals the Fast Fourier Transform and circulant embedding based methods can be generalised,
so the ideas of Davies and Harte [7], Wood and Chan [8], Dietrich [9] and Kroese [13] can be applied. The
method will be presented according to Dietrich’s generalisation, but note that some tricks can be added,
which can give a boost to the execution time. Let me denote the inner product structure of the driving noise

related to the I(T,N, ∫
T
0 h(s)dζ(ω)s) time serie as following

ψ(k) ≐ ⟨h1, hk+1⟩H,

where {hk}
N
k=1 ≐ I(T,N,1[0,T ](.)). The main idea of the [7], [8], [9], [13] methods is embedding the covariance

matrix in the so-called circulant matrix. In this case the inner product structure can be embedded because
of the isometry between the corresponding Hilbert spaces, i.e.

C(ψ) ≐

⎛
⎜
⎜
⎜
⎜
⎜
⎝

c0 c1 c2 . . . cM−2 cM−1
cM−1 c0 c1 . . . cM−3 cM−2
cM−2 cM−1 c0 . . . cM−4 cM−3
⋮ ⋮ ⋮ . . . ⋮ ⋮

c1 c2 c3 . . . cM−1 c0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

where C is a 2(N − 1) × 2(N − 1) dimensional matrix, c0 = 1 and cj ≐ ψ(k)χ{1≤k≤N−1} + ψ(M − k)χ{N≤k≤M}.
Since Theorem (2) the following decomposition holds true C = QΛQ∗, where the matrices Λ and Q can be
written in the following form

Λ = diag(λ0, λ1, ..., λM − 1), λk =
M−1
∑
j=0

cjexp{ − 2πi
jk

M
}, qjk =

1
√
M

exp{ − 2πi
jk

M
}.

Since this method is obtained as a generalisation of simulating any fractal noise, the practical realization of
this approach requires the computation of discrete Fourier transform, both direct and inverse with regard to
[10]. The multiplication by the matrixQ acts, up to the constant 1√

M
, as taking the discrete Fourier transform
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and similarly, multiplying by the conjugate transpose of Q, up to the constant
√
M , is the same operation as

taking the inverse discrete Fourier transform. Without going into the details of the implementation tricks,
an efficient exact method can be built up as following.

The first step is calculating the inner product structure of the driving noise over the the grid one aims at
simulating, i.e. ψ(1), ..., ψ(N − 1) has to be calculated, where ψ(k) = ⟨h1, hk+1⟩H and {hk}

N
k=1 are defined as

I(T,N,1[0,T ](.)) according to the isometry between the two Hilbert spaces. Now one can fill the elements
c0, ..., cM−1 needed for the embedded structure. The next step is acting the discrete Fourier transform on
(c0, c1, ..., cM−1) and taking the fast Fourier transform of the obtained eigenvalue vector, which has to be
a real vector theoritically, but numerical imprecision can lead to negligible imaginary parts, so taking the
real part of the obtained vector is suggested. In case of simulating several realizations, the steps introduced
above have to calculated only once. Note, that the computation needed for generating one sequence can
be reduced with some changes on the presented methods according to [13]. The third step is taking the
inverse fast Fourier transform of and independent standard normal sequence (ε1, ..., εM) and multiplying the
obtained 1√

M
Q∗(ε1, ..., εM) element-wise with the square root of the vector obtained in the second step. The

isonormal increments can be obtained as the real part of the fast Fourier transform of the result computed in
the third step, i.e. I(T,N, ζ(ω, .)) has been calculated. As the last step one has to multiply the previously
determined discrete driving isonormal process element-wise with T (T,N,h(.)) and taking the cumulative

sum of the result, which leads to I(T,N, ∫
T
0 h(s)dζ(ω)s).

Note that the presented steps of the algorithm introduced above hold true without the (10) assumption,
so without any additional criterions the algorithm can be implemented.

4.2 Simulating Fractional Ornstein-Uhlenbeck Processes via Isonormal Integral
Generator

Fractional Ornstein-Uhlenbeck processes (1) have been introduced as the unique pathwise solution of the
following stochastic differential equation with ξ0 ∈ R initial value

dξt = −αξtdt + σdW
H
t ,

where WH
t denotes the fractional Wiener process and α,σ > 0. If the initial value of the above defined

differential equation is zero, then its solution can be written in the following form

ξt = −σ∫
t

0
e−α(t−s)dWH

s , (11)

which is actually a special case of the previously investigated isonormal integral according to the following
observations.

Let me consider the isonormal process associated with fractional Wiener process {WH
t , t ∈ [0, T ]} with

respect to the corresponding Hurst exponent H ∈ [0,1] as the centered Gaussian family {ζH(ϕ), ϕ ∈ HH},
where the Hilbert space the isonormal space is defined on, HH([0, T ]), is determined as follows. HH consists
of indicator functions written in the form ϕτ(t) ≐ 1[0,τ](t)1[0,T ](t) and the inner product, HH([0, T ]) is
endowed with, can be written as following

⟨ϕτ , ϕν⟩HH
≐
1

2
(τ2H + ν2H − ∣τ − ν∣2H), (12)

i.e. the covariance structure of the Wiener process with respect to the given H Hurst parameter. According
to Kolmogorov’s theorem there exists a Gaussian family over the introduced Hilbert space HH , {ζ(ϕ), ϕ ∈
HH([0, t])}, which is characterized by its covariance structure

⟨ζ(ϕτ), ζ(ϕν)⟩L2(Ω) ≐ ⟨ϕτ , ϕν⟩HH
.

The space of isonormal integrals can be obtained as the associated family of variables to the completion of
the Hilbert space HH([0, T ]), but in this case I omit to go into the details of this analysis.

Thus, if one aims at simulating the discretized stochastic process {ξt}t∈[0,T ] given by (11), i.e. this task

can be written as generating realisations of I(T,N,−σ ∫
t
0 e−α(t−s)dWH

s ), where respect to the integral is
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taken is an isonormal process, then the isonormal integral simulating method investigated in the previous
section can be applied in this special case. The method has been developed with the purpose of being able to
cache in memory as much data as possible. In this case the following sequence of procedures can be cached:
calculation of T (T,N, e−α(t−s)), determining the covariance structure of the fractional Wiener process (12),
embedding the covariance structure and taking the fast Fourier transform of the discrete Fourier transformed
embedded vector.

The chart above has been obtained as testing how many times faster the generalised method is able to
simulate the given number of fractional Ornstein-Uhlenbeck sequences, with the given Hurst exponent from
the investigated [0.01,0.03] interval over 1500 grid-points in the [0,1] time interval, then the procedure based
on the fact that the driving noise simulated by Kroese’s method [13]. Note that Kroese’s method is also
a circulant embedding based algorithm, which is four-times faster then the standard Davies-Harte method
[7]. One may notice the improvement can be observed as getting smaller and smaller Hurst exponents, it is
caused by the stabilisation of the inner product structure embedding on the edges of the [0,1] interval.

4.3 Implementation in Python

I have developed a Python package for simulating isonormal integrals, which consists of several fractional
Wiener process generators, simulation subroutines for fractional Ornstein-Uhlenbeck processes and its trans-
formed versions, i.e. Stochastic Correlation Processes, according to the all the driving noise simulator
methods I have implemented.

However, an FBM 1 package has produced before, all the functions and class objects have been imple-
mented in a much efficient way. I focused on investigating and developing a meta-class for simulating the
elements of the first Wiener-Ito chaos with respect to isonormal noise, where the inner product structure
of the noise process, the embedded inner product structure and the transformed embedded structure have
been declared as self attributes. It is such an important step, since it lets me adding different caching
strategies for the mentioned calculations, which could give a huge boost for the execution time. A getitem()
subroutine has been written for simulating the actual increments of the given fractal noise by applying the
previously calculated transformed embedded inner product structure according to multiplying with certain
Fourier transformed standard normal variables. So if one aims at simulating many sequences with respect to
the given parameters then the introduced class object has to be declared and only the getitem() subroutine
has to be called to get the given number of sequences. For example, the class for generating fractional
Ornstein-Uhlenbeck processes can be deduced from the mentioned meta-class as declaring the weights, the
increments will be multiplied element-wise, according to the deterministic integrand related to the fractional
Ornstein-Uhlenbeck processes. Note that the meta-class has the property that it can be used as data loader
object of Pytorch, which makes it easy to apply the meta-class as a data-generating procedure for neural
networks developed in Pytorch.

1https://pypi.org/project/fbm/
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