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Az előző félévekben elkezdett dinamikus árazási témával foglalkoztam ebben a félévben
is. Az első két félévben a dinamikus árazás egy új megközelítésével sikerült a bi-demand
esetben egy új eredményt elérni, miszerint ha minden vásárló igénye legfeljebb 2, akkor
van polinomiális időben kiszámítható dinamikus árazás, mely eléri az optimális közjólét
értékét. Azonban az első két félévben használtuk azt a feltételt, hogy minden optimális
megoldásban minden vásárló annyi tárgyat kap, amennyi az igénye. A harmadik félévben
ezt az eredményt erősítettük azzal, hogy elhagytuk ezt a feltételt. A félév fő eredmény
pedig annak az igazolása, hogy tetszőleges számú vásárló esetén akkor is van polinomiális
időben kiszámítható optimális dinamikus árazás, ha minden vásárló kiértékelési függvénye
2-rangú matroid rangfüggvénye. Ez utóbbi bizonyítása nagyon hasonlít a bi-demand eset
bizonyításához, így a beszámoló csak a bi-demand eset részletes tárgyalását tartalmazza.
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1 Introduction

A combinatorial market consists of a set of indivisible goods and a set of buyers, where each
buyer has a valuation function that represents the buyer’s preferences over the subsets of items.
From an optimization point of view, the goal is to find an allocation of the items to buyers in
such a way that the total sum of the buyers’ values is maximized – this sum is called the social
welfare. An optimal allocation can be found efficiently in various settings [8, 17, 23, 25], but
the problem becomes significantly more difficult if one would like to realize the optimal social
welfare in an automatic way through simple mechanisms.

A great amount of work concentrated on finding optimal pricing schemes. Given a price for
each item, we define the utility of a buyer for a bundle of items to be the value of the bundle
with respect to the buyer’s valuation, minus the total price of the items in the bundle. A pair
of pricing and allocation is called a Walrasian equilibrium if the market clears (that is, all the
items are assigned to buyers) and everyone receives a bundle that maximizes her utility. Given
any Walrasian equilibrium, the corresponding price vector is referred to as Walrasian pricing,
and the definition implies that the corresponding allocation maximizes social welfare.

Although Walrasian equilibria have distinguished properties, Cohen-Addad et al. [9] realized
that the existence of a Walrasian equilibrium alone is not sufficient to achieve optimal social
welfare based on buyers’ decisions. Different bundles of items might have the same utility for
the same buyer, and in such cases ties must be broken by a central coordinator in order to
ensure that the optimal social welfare is achieved. However, the presence of such a tie-breaking
rule is unrealistic in real life markets and buyers choose an arbitrary best bundle for themselves
without caring about social optimum.

Dynamic pricing schemes were introduced as an alternative to posted-price mechanisms that
are capable of maximizing social welfare even without a central tie-breaking coordinator. In
this model, the buyers arrive in a sequential order, and each buyer selects a bundle of the
remaining items that maximizes her utility. The buyers’ preferences are known in advance, and
the seller is allowed to update the prices between buyer arrivals based upon the remaining set
of items, but without knowing the identity of the next buyer. The main open problem in [9]
asked whether any market with gross substitutes valuations has a dynamic pricing scheme that
achieves optimal social welfare.

Related work Walrasian equilibria were introduced already in the late 1800s [26] for divisible
goods. A century later, Kelso and Crawford [20] defined gross substitutes functions and verified

∗A preliminary version of the work appeared on ArXiv [1].
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the existence of Walrasian prices for such valuations. It is worth mentioning that the class of
gross substitutes functions coincides with that of M\-concave functions, introduced by Murota
and Shioura [22]. The fundamental role of the gross substitutes condition was recognized by
Gul and Stacchetti [18] who verified that it is necessary to ensure the existence of a Walrasian
equilibrium.

Cohen-Addad et al. [9] and independently Hsu et al. [19] observed that Walrasian prices
are not powerful enough to control the market on their own. The reason is that ties among
different bundles must be broken in a coordinated fashion that is consistent with maximizing
social welfare. Furthermore, this problem cannot be resolved by finding Walrasian prices where
ties do not occur as [19] showed that minimal Walrasian prices necessarily induce ties. To
overcome these difficulties, [9] introduced the notion of dynamic pricing schemes, where prices
can be redefined between buyer-arrivals. They proposed a scheme maximizing social welfare for
matching or unit-demand markets, where the valuation of each buyer is determined by the most
valuable item in her bundle. In each phase, the algorithm constructs a so-called ‘relation graph’
and performs various computations upon it. Then the prices are updated based on structural
properties of the graph.

Recently, Berger et al. [3] considered markets beyond unit-demand valuations, and provided
a clever polynomial-time algorithm for finding optimal dynamic prices up to three multi-demand
buyers. Their approach is based on a generalization of the relation graph of [9] that they call
a ‘preference graph’, and on a new directed graph termed the ‘item-equivalence graph’. They
showed that there is a strong connection between these two graphs, and provided a clever pricing
scheme based on these observations.

Further results on posted-price mechanisms considered matroid rank valuations [2], relax-
ations such as combinatorial Walrasian equilibrium [16], and online settings [4–7,10–12,14,15].

Our contribution In the present work, we focus on multi-demand combinatorial markets. In
this setting, each buyer t has a positive integer bound b(t) on the number of desired items, and
the value of a set is the sum of the values of the b(t) most valued items in the set. In particular,
if we set each b(t) to one then we get back the unit-demand case.

For multi-demand markets, the problem of finding an allocation that maximizes social wel-
fare is equivalent to a maximum weight b-matching problem in a bipartite graph with vertex
classes corresponding to the buyers and items, respectively. Note that, unlike in the case of
Walrasian equilibrium, clearing the market is not required as a maximum weight b-matching
might leave some of the items unallocated. The high level idea of our approach is to consider
the dual of this problem, and to define an appropriate price vector based on an optimal dual
solution with distinguished structural properties.

Based on the primal-dual interpretation of the problem, we give a simpler proof of a result
of Cohen-Addad et al. [9] on unit-demand valuations. Although this can be considered a special
case of bi-demand markets, we discuss it separately as an illustration of our techniques.

Theorem 1 (Cohen-Addad et al.). Every unit-demand market admits an optimal dynamic
pricing that can be computed in polynomial time.

The problem becomes significantly more difficult for larger demands. Berger et al. [3] ob-
served that bundles that are given to a buyer in different optimal allocations satisfy strong
structural properties. For markets up to three multi-demand buyers, they grouped the items
into at most eight equivalence classes based on which buyer could get them in an optimal solu-
tion, and then analyzed the item-equivalence graph for obtaining an optimal dynamic pricing.
We show that these properties follow from the primal-dual interpretation of the problem, and
give a new proof of their result.
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Theorem 2 (Berger et al.). Every multi-demand market up to three buyers admits an optimal
dynamic pricing scheme, and such prices can be computed in polynomial time.

The main result of this work is an algorithm for determining optimal dynamic prices for
bi-demand markets with an arbitrary number of buyers, that is, when the demand b(t) is two for
each buyer t. Besides structural observations on the dual solution, the proof relies on uncrossing
sets that are problematic in terms of resolving ties.

Theorem 3. Every bi-demand market admits an optimal dynamic pricing scheme, and such
prices can be computed in polynomial time.

When the total demand of buyers exceeds the number of available items, ensuring the
optimality of the final allocation becomes more intricate. Therefore, first we consider instances
satisfying the following property:

(OPT) each buyer t ∈ T receives exactly b(t) items in every optimal allocation.

While this is a restrictive assumption, it is a reasonable condition that holds for a wide range
of applications. For example, if the total number of items is not less than the total demand of
the buyers and the value of each item is strictly positive for each buyer, then it is not difficult
to check that (OPT) is satisfied. We prove Theorems 2 and 3 under assumption (OPT) first;
the proofs of the general cases are rather technical and so are deferred to the Appendix.

This work is organized as follows. Basic definitions and notation are given in Section 2,
while Section 3 provides structural observations on optimal dynamic prices in multi-demand
markets. Unit demand markets and multi-demand markets up to three buyers satisfying the
the (OPT) condition are discussed in Section 4. Finally, Section 5 solves the bi-demand case,
also under the (OPT) condition. In the Appendix, we prove the existence dynamic prices in
multi-demand markets up to three buyers and in the bi-demand case without assuming (OPT).

2 Preliminaries

Basic notation. We denote the sets of real, non-negative real, integer, and positive integer
numbers by R, R+, Z, and Z>0, respectively. Given a ground set S and subsets X,Y ⊆ S, the
difference of X and Y is denoted by X − Y . If Y consists of a single element y, then X − {y}
and X ∪ {y} are abbreviated by X − y and X + y, respectively. The symmetric difference of X
and Y is X4Y := (X − Y ) ∪ (Y −X). For a function f : S → R, the total sum of its values
over a set X is denoted by f(X) :=

∑
s∈X f(s). The inner product of two vectors x, y ∈ RS is

x · y :=
∑

s∈S x(s)y(s). Given a set S, an ordering of S is a bijection between S and the set
of integers {1, . . . , |S|}. For a set X ⊆ S, we denote the restriction of the ordering to S − X
by σ|S−X . Given orderings σ1 and σ2 of disjoint sets S1 and S2, respectively, we denote by
σ = (σ1, σ2) the ordering of S := S1 ∪ S2 where σ(s) = σ1(s) for s ∈ S1 and σ2(s) + |S1| for
s ∈ S2.

Let G = (S, T ;E) be a bipartite graph with vertex classes S and T and edge set E. We
will always denote the vertex set of the graph by V := S ∪ T . For a subset X ⊆ V , we denote
the set of edges induced by X by E[X], while G[X] stands for the graph induced by X. The
graph obtained from G by deleting X is denoted by G−X. Given a subset F ⊆ E, the set of
edges in F incident to a vertex v ∈ V is denoted by δF (v). Accordingly, the degree of v in F
is dF (v) := |δF (v)|. For a set Z ⊆ T , the set of neighbors of Z with respect to F is denoted by
NF (Z), that is, NF (Z) := {s ∈ S | there exists and edge st ∈ F with t ∈ Z}. The subscript F
is dropped from the notation or is changed to G whenever F is the whole edge set.
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Market model. A combinatorial market consists of a set S of indivisible items and a set
T of buyers. We consider multi-demand1 markets, where each buyer t ∈ T has a valuation
vt : S → R+ over individual items together with an upper bound b(t) on the number of desired
items, and the value of a set X ⊆ S for buyer t is defined as vt(X) := max{vt(X ′) | X ′ ⊆
X, |X ′| ≤ b(t)}. Unit-demand and bi-demand valuations correspond to the special cases when
b(t) = 1 and b(t) = 2 for each t ∈ T , respectively.

Given a price vector p : S → R+, the utility of buyer t for X is defined as ut(X) :=
vt(X)− p(X). The buyers, whose valuations are known in advance, arrive in an undetermined
order, and the next buyer always chooses a subset of at most her desired number of items
that maximizes her utility. In contrast to static models, the prices can be updated between
buyer-arrivals based on the remaining sets of items and buyers. The goal is to set the prices at
each phase in such a way that no matter in what order the buyers arrive, the final allocation
maximizes the social welfare. Such a pricing scheme and allocation are called optimal. It is
worth emphasizing that a buyer may decide either to take or not to take an item which has 0
utility, that is, it might happen that the bundle of items that she chooses is not inclusionwise
minimal. This seemingly tiny degree of freedom actually results in difficulties that one has to
take care of.

We may assume that all items are allocated in every optimal allocation, therefore |S| ≤∑
t∈T b(t). Indeed, if we take in optimal allocation that uses a minimum number of items, then

we can set the price of unused items to a large value so that no buyer takes them. In particular,
when (OPT) is assumed, then the number of items coincides with the total demand of the
buyers.

3 Optimal allocations and maximum weight b-matchings

A combinatorial market with multi-demand valuations can be naturally identified with an edge-
weighted complete bipartite graph G = (S, T ;E) where S is the set of items, T is the set of
buyers, and for every item s and buyer t the weight of edge st ∈ E is w(st) := vt(s). We extend
the demands to S as well by setting b(s) = 1 for every s ∈ S. Then an optimal allocation of
the items corresponds to a maximum weight subset M ⊆ E satisfying dM (v) ≤ b(v) for each
v ∈ S ∪ T .

Let G = (S, T ;E) be a bipartite graph and recall that V := S ∪ T . Given an upper bound
b : V → Z+ on the vertices, a subset M ⊆ E is called a b-matching if dM (v) ≤ b(v) for every
v ∈ V . If equality holds for each v ∈ V , then M is called a b-factor. Notice that if b(v) = 1 for
each v ∈ V , then a b-matching or b-factor is simply a matching or perfect matching, respectively.
Kőnig’s classical theorem [21] gives a necessary and sufficient condition for the existence of a
perfect matching in a bipartite graph.

Theorem 4 (Kőnig). There exists a perfect matching in a bipartite graph G = (S, T ;E) if and
only if |S| = |T | and |N(Y )| ≥ |Y | for every Y ⊆ T .

Let w : E → R be a weight function on the edges. A function π : V → R on the vertex set
V = S ∪ T is a weighted covering of w if π(s) + π(t) ≥ w(st) holds for every edge st ∈ E. An
edge st is called tight with respect to π if π(s) + π(t) = w(st). The total value of the covering is
π · b =

∑
v∈V π(v) · b(v). We refer to a covering of minimum total value as minimum weighted

covering. The celebrated result of Egerváry [13] provides a min-max characterization for the
maximum weight of a perfect matching in a bipartite graph.

1Multi-demand valuations are special cases of weighted matroid rank functions for uniform matroids, see [2].
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Theorem 5 (Egerváry). Let G = (S, T ;E) be a graph, w : W → R be a weight function.
Then the maximum weight of a matching is equal to the minimum total value of a non-negative
weighted covering π of w. If G has a perfect matching, then the maximum weight of a perfect
matching is equal to the minimum total value of a weighted covering π of w.

In general, a b-factor or even a maximum weight b-matching can be found in polynomial
time (even in non-bipartite graphs, see e.g. [24]). However, when b is identically one on S, then
a characterization follows easily from Kőnig’s and Egerváry’s theorems2.

Theorem 6. Let G = (S, T ;E) be a bipartite graph, w : E → R+ be a weight function, and
b : V → Z>0 be an upper bound function satisfying b(s) = 1 for s ∈ S.

(a) G has a b-factor if and only if |S| = b(T ) and |N(X)| ≥ b(X) for every X ⊆ T .

(b) The maximum w-weight of a b-matching is equal to the minimum total value of a non-
negative weighted covering π of w.

Proof. Let G′ = (S′, T ;E′) denote the graph obtained from G by taking b(t) copies of each
vertex t ∈ T and connecting them to the vertices in NG(t). It is not difficult to check that G
has a b-factor if and only if G′ has a perfect matching, thus first part of the theorem follows by
Theorem 4.

To see the second part, for each copy t′ ∈ T ′ of an original vertex t ∈ T , define the weight
of edge st′ as w′(st′) := w(st). Then the maximum w-weight of a b-matching of G is equal to
the maximum w′-weight of a matching of G′. Now take an optimal weighted covering π′ of w′

in G′. As the different copies of an original vertex t ∈ T share the same neighbors in G′, each
of them receive the same value in any optimal weighted covering of w′ - define π(t) to be this
value. Then π is a weighted covering of w in G with total value equal to that of π′, hence the
theorem follows by Theorem 5.

Given a weighted cover π, the subgraph of tight edges with respect to π is denoted by
Gπ = (S, T ;Eπ). In what follows, we prove some easy structural results on the relation of
optimal b-matchings and weighted coverings.

Lemma 1. Let G = (S, T ;E) be a bipartite graph, w : E → R+ be a weight function, and
b : V → Z>0 be an upper bound function satisfying b(s) = 1 for s ∈ S. Then M ⊆ Eπ holds
for any pair of maximum weight b-matching M and minimum weighted covering π, and for a
vertex v ∈ V we have π(v) = 0 if dM (v) < b(v). For b-factors, the reverse implication also
holds, that is, M is a maximum w-weight b-factor in G if and only if M is a b-factor in Gπ for
some minimum weighted covering π.

Proof. Let M be a maximum weight b-matching and π be a non-negative minimum weighted
cover. We have w(M) =

∑
st∈M w(st) ≤

∑
st∈M (π(s)+π(t)) ≤

∑
v∈V π(v) ·b(v), and if equality

holds throughout, then M necessarily consists of tight edges and π(v) = 0 if dM (v) < b(v).
Now consider the b-factor case. Let M be a maximum weight b-factor and π be a minimum

weighted cover. We have w(M) =
∑

st∈M w(st) ≤
∑

st∈M (π(s) + π(t)) =
∑

v∈V π(v) · b(v), and
the inequality is satisfied with equality if and only if M consists of tight edges.

Following the notation of [3], we call an edge st ∈ E legal if there exists a maximum weight
b-matching containing it, and say that s is legal for t. A subset F ⊆ δ(t) is feasible if there exists
a maximum weight b-matching M such that δM (t) = F ; in this case NF (t) is called feasible for
t3. Notice that a feasible set necessarily consists of legal edges. The essence of the following

2The same results follow by strong duality applied to the linear programming formulations of the problems.
3The notion of feasibility is closely related to ‘legal allocations’ introduced in [3]. However, ‘legal subsets’ are

different from feasible ones, hence we use a different term here to avoid confusion.
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technical lemma is that there exists a minimum weighted covering for which Gπ consists only
of legal edges, thus giving a better structural understanding of optimal dual solutions; for an
illustration see Figure 1.

Lemma 2. The optimal π attaining the minimum in Theorem 6(b) can be chosen such that

(a) an edge st is tight with respect to π if and only if it is legal, and

(b) π(v) = 0 for some v ∈ V if and only if there exists a maximum weight b-matching M with
dM (v) < b(v).

Furthermore, such a π can be determined in polynomial time.

Proof. In both cases, the ‘if’ part follows by Lemma 1. Let M and π be a maximum weight
b-matching and a minimum weighted covering, respectively. To prove the lemma, we will modify
π in two phases.

In the first phase, we ensure (a) to hold. Take an arbitrary ordering e1, . . . , em of the
edges, and set π0 := π and w0 := w. For i = 1, . . . ,m, repeat the following steps. Let
εi := max{wi−1(M) | M is a b-matching} −max{wi−1(M) | M is a b-matching containing ei}.
Let wi denote the weight function obtained from wi−1 by increasing the weight of ei by εi/2,
and let πi be a minimum weighted covering of wi. Due to the definition of εi, a b-matching M
has maximum weight with respect to wi if and only if it has maximum weight with respect to
wi−1, and in this case wi(M) = wi−1(M). That is, the sets of maximum weight b-matchings
with respect to w and wm coincide, and the weight of legal edges does not change, therefore πm
is a minimum weighted covering of w as well.

In the second phase, we concentrate on (b). Take an arbitrary ordering v1, . . . , vn of the
vertices, and consider πm and wm that the previous phase stopped with. For j = 1, . . . , n, repeat
the following steps. Let δj := max{wm+j−1(M) | M is a b-matching} − max{wm+j−1(M) |
M is a b-matching, dM (vj) ≤ b(vj)− 1}. Let wm+j denote the weight function obtained from
wm+j−1 by decreasing the weight of the edges incident to vj by δj/(b(vj)+1), and let πm+j be a
minimum weighted covering of wm+j . Due to the definition of δj , a b-matching M has maximum
weight with respect to wm+j−1 if and only if it has maximum weight with respect to wm+j , and in
this case wm+j(M) = wm+j−1(M)−δj · b(vj). That is, the sets of maximum weight b-matchings
with respect to w and wm+n coincide. Let π′ denote the weighted covering of w obtained by
increasing the value of πm+n(v`) by δ`/(b(v`) + 1) for ` = 1, . . . , n. As the total value of π′

is greater than that of πm+n by exactly max{w(M) | M is a b-matching} − max{wm+n(M) |
M is a b-matching}, π′ is a minimum weighted covering of w.

As εi > 0 whenever ei is not legal and δj > 0 whenever there exists a maximum weight
b-matching M with dM (vj) < b(vj), π

′ satisfies both (a) and (b) as required.

Remark 7. If the market satisfies property (OPT), the lemma implies that there exists a
minimum weight cover that is positive for every buyer and every item.

Feasible sets play a key role in the design of optimal dynamic pricing schemes. After the
current buyer leaves, the associated bipartite graph is updated by deleting the vertices corre-
sponding to the buyer and her bundle of items, and the prices are recomputed for the remaining
items. It follows from the definitions that the scheme is optimal if and only if the prices are
always set in such a way that any bundle of items maximizing the utility of an agent t forms a
feasible set for t.

The high-level idea of our approach is as follows. First, we take a minimum weighted cover
π provided by Lemma 2. If we define the price of an item s ∈ S to be π(s), then for any t ∈ T
we have ut(s) = vt(s) − π(s) = w(st) − π(s) ≤ π(t) and, by Lemma 2(a), equality holds if

6



t1 t2 t3

s1 s2 s3 s4 s6s5

1 4
3

1 33 2342

(a) Maximum weight b-matching M1 =
{t1s1, t1s3, t2s2, t2s5, t3s4, t3s6}.

t1 t2 t3

s1 s2 s3 s4 s6s5

1 4
3

1 33 2342

(b) Maximum weight b-matching M2 =
{t1s1, t1s4, t2s2, t2s3, t3s5, t3s6}

1 4
3

1 33 2342

1

0 0 3 2 2 1

11

(c) A minimum weighted covering π. Notice
that s1t1 is tight but not legal, and π(s1) =
π(s2) = 0 although dM (s1) = dM (s2) = 1 for
every maximum weight b-matching.

1 4
3

1 33 2342

1
2

1
2

3
2

5
2

1
2

5
2

1
2

1
2

7
2

(d) A minimum weighted covering satisfying
the conditions of Lemma 2.

Figure 1: A bipartite graph corresponding to a market with three buyers having demand two
and six items. The numbers denote the weights of the edges; all the remaining edges have weight
0. There are two maximum weight b-matchings M1 (Figure 1a) and M2 (Figure 1b). Notice
that both s3t1 and s4t1 are legal, but they do not form a feasible set.

and only if s is feasible for t. This means that each buyer prefers choosing items that are legal
for her. For unit-demand valuations, such a solution immediately yields an optimal dynamic
pricing scheme. However, when the demands are greater than one, a collection of legal items
might not form a feasible set, see an example on Figure 1. In order to control the choices of the
buyers, we slightly perturb the item prices by choosing an ordering σ : S → {1, . . . , |S|} and set
the price of item s to be π(s) + δ · σ(s) for some sufficiently small δ > 0. Here the value of σ(s)
will be set in such a way that any bundle of items maximizing the utility of a buyer will form
a feasible set for her, as needed.

Given a bipartite graph G = (S, T ;E) and upper bounds b : V → Z>0 with b(s) = 1 for
s ∈ S, we call an ordering σ : S → {1, . . . , |S|} adequate for G if it satisfies the following
condition: for any t ∈ T , there exists a b-factor in G that matches t to its first b(t) neighbors
according to the ordering σ. For ease of notation, we introduce the slack of π to denote

∆(π) := min
{

min{π(t) + π(s)− w(st) | st ∈ E, st is not tight}, min{π(v) | v ∈ V, π(v) > 0}
}
,

where the minimum over an empty set is defined to be +∞. Using this terminology, the above
idea is formalized in the following lemma.

Lemma 3. Assume that (OPT) is satisfied. Let G = (S, T ;E) be the edge-weighted bipartite
graph associated with the market, π be a weighted cover provided by Lemma 2, and σ be an
adequate ordering for Gπ. For δ := ∆(π)/(|S|+ 1), setting the prices to p(s) := π(s) + δ · σ(s)
results in optimal dynamic prices.

Proof. By (OPT), every optimal solution is a b-factor. Observe that for any s ∈ S and t ∈ T ,
we have

ut(s) = vt(s)− p(s)
= w(st)− (π(s) + δ · σ(s))

≤ π(t)− δ · σ(s).
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Here equality holds if and only if st is tight with respect to π, in which case ut(s) = π(t)− δ ·
σ(s) > π(t)−∆(π) · |S|/(|S|+ 1) > 0 by the choice of δ and by Lemma 2(b). Furthermore, if st
is tight and s′t is a non-tight edge of G, then ut(s

′) ≤ π(t)−∆(π) ≤ π(t)− δ(|S|+ 1) < ut(s)
by the choice of δ. Concluding the above, we get that no matter which buyer arrives next,
she strictly prefers legal items over non-legal ones, and legal items have strictly positive utility
values for her. That is, she chooses the first b(t) of its neighbors in Gπ according to the ordering
σ. As σ is adequate for Gπ, the statement follows by Lemma 1.

4 Unit- and multi-demand markets

4.1 Unit-demand markets

The existence of optimal dynamic prices for unit-demand valuations was settled in [9]. As an
illustration of our approach, we give a simple algorithm that uses an optimal dual solution.

Theorem 1 (Cohen-Addad et al.). Every unit-demand market admits an optimal dynamic
pricing that can be computed in polynomial time.

Proof. Consider the bipartite graph associated with the market, take an optimal cover π pro-
vided by Lemma 2, and set the price of item s to be π(s). For a pair of buyer t ∈ T and s ∈ S,
we have

ut(s) = vt(s)− p(s)
= w(st)− p(s)
≤ (π(s) + π(t))− π(s)

= π(t).

By Lemma 2(a), strict equality holds if and only if st is legal. We claim that no matter which
buyer arrives next, she either chooses an item that is legal (and so forms a feasible set for her),
or she takes none of the items and the empty set is feasible for her.

To see this, assume first that π(t) > 0. By Lemma 2(b), there exists at least one item legal
for t, and those items are exactly the ones maximizing her utility. Now assume that π(t) = 0.
By Lemma 2(b), the empty set is feasible for t. Furthermore, for any item s ∈ S the utility
ut(s) is negative unless s is legal for t, in which case ut(s) = 0. Notice that a buyer may decide
to take or not to take any item with zero utility value. However, she gets a feasible set in both
cases by the above, thus concluding the proof.

4.2 Multi-demand markets up to three buyers

The aim of the section is to settle the existence of optimal dynamic prices in multi-demand
markets with a bounded number of buyers. In order to present the results as clearly as possible,
we follow the structure used in [3]: we first consider the case when (OPT) is satisfied, then
extend the proof to the general setting in the Appendix.

Theorem 8 (Berger et al.). Every multi-demand market with at most three buyers admits an
optimal dynamic pricing scheme, and such prices can be computed in polynomial time.

Proof. We prove the theorem for instances where (OPT) is satisfied; the proof for the general
case is detailed in the Appendix. By Lemma 3, it suffices to show the existence of an adequate
ordering for Gπ, where π is a weighted cover provided by Lemma 2. For a single buyer, the
statement is meaningless. For two buyers t1 and t2, |S| = b(t1) + b(t2) by assumption (OPT).
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Figure 2: Definition of the labeling Θ for three buyers. Notice that some parts might be empty,
e.g. if |X12| ≤ b2, then there are no items with label 1 or 3 in the intersection of NGπ(t1) and
NGπ(t2).

Let σ be an ordering that starts with items in NGπ(t1)4NGπ(t2) and then puts the items in
NGπ(t1)∩NGπ(t2) at the end of the ordering. Then, after the deletion of the first b(ti) neighbors
of ti according to σ, the remaining b(t3−i) items are in NGπ(t3−i), hence σ is adequate.

Now we turn to the case of three buyers. Let t1, t2 and t3 denote the buyers, and let
bi, vi, and ui denote the demand, valuation, and utility function corresponding to buyer ti,
respectively. Without loss of generality, we may assume that b1 ≥ b2 ≥ b3. The proof is based
on the observation that a set is feasible if and only if its deletion leaves ‘enough’ items for the
remaining buyers, formalized as follows.

Claim 1. A set F ⊆ NGπ(ti) is feasible for ti if and only if |F | = bi and |NGπ(tj) − F | ≥ bj
for j 6= i.

Proof. The conditions are clearly necessary. To prove sufficiency, we show that the constraints
of Theorem 6(a) are fulfilled after deleting ti and F from Gπ, that is, |S − F | = b(T )− bi and
|NGπ(Y ) − F | ≥ b(Y ) for Y ⊆ T − ti. By (OPT) and the assumption that every item is legal
for at least two buyers, |S − F | = b(T ) − bi holds for Y = T − ti. Furthermore, one-element
subsets have enough neighbors by assumption, and the claim follows.

For I ⊆ {1, 2, 3}, let XI ⊆ S denote the set of items that are legal exactly for buyers with
indices in I, that is, XI :=

(⋂
i∈I NGπ(ti)

)
−
(⋃

i/∈I NGπ(ti)
)
. We may assume that X1 = X2 =

X3 = ∅. Indeed, given an adequate ordering for Gπ − (X1 ∪X2 ∪X3) where the demands of ti
is changed to bi − |Xi| for i ∈ {1, 2, 3}, putting the items in X1 ∪X2 ∪X3 at the beginning of
the ordering results in an adequate solution for the original instance.

By assumption, |X12| + |X13| + |X23| + |X123| = b1 + b2 + b3. Furthermore, |Xij | ≤ bi + bj
holds for i 6= j, as otherwise in any allocation there exists an item that is legal only for ti
and tj but is not allocated to any of them, contradicting (OPT). We first define a labeling
Θ : S → {1, 2, 3, 4, 5} so that for each buyer i and set Xij , the number of items in Xij with label
at most 4− i is max{0, |Xij | − bj}. We will make sure that each buyer i selects all items with
label at most 4− i, which will be the key to satisfy the constraints of Claim 1, see Figure 2.

All the items in X123 are labeled by 5. If |X12| ≤ b2, then all the items in X12 are labeled
by 4. If b1 ≥ |X12| > b2, then b2 items are labeled by 4 and the remaining |X12| − b2 items are
labeled by 3 in X12. If |X12| > b1, b2 items are labeled by 4, b1 − b2 items are labeled by 3,
and the remaining |X12| − b1 items are labeled by 1 in X12. We proceed with X13 analogously.
If |X13| ≤ b3, then all the items in X13 are labeled by 4. If b1 ≥ |X13| > b3, then b3 items are
labeled by 4 and the remaining |X13| − b3 items are labeled by 2 in X13. If |X13| > b1, b3 items
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are labeled by 4, b1−b3 items are labeled by 2, and the remaining |X13|−b1 items are labeled by
1 in X13. Similarly, if |X23| ≤ b3, then all the items in X23 are labeled by 4. If b2 ≥ |X23| > b3,
then b3 items are labeled by 4 and the remaining |X23| − b3 items are labeled by 2 in X23. If
|X23| > b2, then b3 items are labeled by 4, b2 − b3 items are labeled by 2, and the remaining
|X23| − b2 items are labeled by 1 in X23.

Now let σ be any ordering of the items satisfying the following condition: if the label of item
s1 is strictly less than that of item s2, then s1 precedes s2 in the ordering, that is, Θ(s1) < Θ(s2)
implies σ(s1) < σ(s2). We claim that σ is adequate for Gπ. To see this, it suffices to verify that
the set F of the first b(ti) neighbors of ti according to σ fulfills the requirements of Claim 1 for
i = 1, 2, 3. Let {i, j, k} = {1, 2, 3}. First we show that F contains all the items s ∈ Xij ∪Xik

with Θ(s) ≤ 4− i.

Claim 2. We have |{s ∈ Xij ∪Xik | Θ(s) ≤ 4− i}| ≤ bi.

Proof. Suppose to the contrary that this does not hold. Then bi < max{0, |Xij | − bj} +
max{0, |Xik| − bk} by the definition of the labeling. Since |Xij | ≤ bi + bj and |Xik| ≤ bi + bk, we
have max{0, |Xij | − bj} ≤ bi and max{0, |Xik| − bk} ≤ bi. Therefore if bi < max{0, |Xij | − bj}+
max{0, |Xik|−bk}, then both maximums must be positive on the right hand side. However, this
leads to bi+ bj + bk < |Xij |+ |Xik|, contradicting bi+ bj + bk = |Xij |+ |Xik|+ |Xjk|+ |Xijk|.

By Claim 2, F contains all the items s ∈ Xij ∪Xik with Θ(s) ≤ 4− i, we have |Xij−F | ≤ bj
and |Xik − F | ≤ bk. Thus we get

|NGπ(tj)− F | = |Xij − F |+ |Xjk|+ |Xijk − F |
= |S| − |Xik − F | − |F |
≥ (bi + bj + bk)− bk − bi
= bj .

An analogous computation shows that |NGπ(tk) − F | ≥ bk. That is, F is indeed a feasible set
for ti, concluding the proof of the theorem.

5 Bi-demand markets

This section is devoted to the proof of our main result, the existence of optimal dynamic prices
in bi-demand markets. The algorithms tries to identify subsets of buyers whose neighboring
set in Gπ is ‘small’, meaning that other buyers should take no or at most one item from it.
If no such set exists, then an adequate ordering is easy to find. Otherwise, by examining the
structure of dangerous sets, the problem is reduced to smaller instances.

Theorem 3. Every bi-demand market admits an optimal dynamic pricing scheme, and such
prices can be computed in polynomial time.

Proof. We prove the theorem for instances where (OPT) is satisfied; the proof for the general
case is detailed in the Appendix. Let G = (S, T ;E) and w be the bipartite graph and weight
function associated with the market. Take a weighted cover π of w provided by Lemma 2, and
consider the subgraph Gπ = (S, T ;Eπ) of tight edges. For simplicity, we call a subset M ⊆ Eπ a
(1, 2)-factor if dM (s) = 1 for every s ∈ S and dM (t) = 2 for every t ∈ T . By (OPT), Lemma 1,
and the assumption that all items are allocated in every optimal allocation, there is a one-to-one
correspondence between optimal allocations and (1, 2)-factors of Gπ. Therefore, by Lemma 3,
it suffices to show the existence of an adequate ordering σ for Gπ.
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We prove by induction on |T |. The statement clearly holds when |T | = 1, hence we assume
that |T | ≥ 2. As there exists such a solution by assumption, |NGπ(Y )| ≥ 2|Y | for every Y ⊆ T
by Theorem 6(a). We distinguish three cases.

Case 1. |NGπ(Y )| ≥ 2|Y |+ 2 for every ∅ 6= Y ( T .
For any t ∈ T and s1, s2 ∈ NGπ(t), the graph Gπ − {s1, s2, t} still satisfies the conditions of

Theorem 6(a), hence {s1, s2} is feasible for t. Therefore σ can be chosen arbitrarily.

Case 2. |NGπ(Y )| ≥ 2|Y |+ 1 for ∅ 6= Y ( T and there exists Y for which equality holds.
We call a set Y ⊆ T dangerous if |NGπ(Y )| = 2|Y |+ 1. By Theorem 6(a), a pair {s1, s2} ⊆

NGπ(t) is not feasible for buyer t if and only if there exists a dangerous set Y ⊆ T − t with
s1, s2 ∈ NGπ(Y ). In such case we say that Y belongs to buyer t. Notice that the same dangerous
set might belong to several buyers.

Claim 3. Assume that Y1 and Y2 are dangerous sets with Y1 ∪ Y2 ( T .

(a) If Y1 ∩ Y2 = ∅ and NGπ(Y1) ∩NGπ(Y2) 6= ∅, then |NGπ(Y1) ∩NGπ(Y2)| = 1 and Y1 ∪ Y2 is
dangerous.

(b) If Y1 ∩ Y2 6= ∅, then both Y1 ∩ Y2 and Y1 ∪ Y2 are dangerous.

Proof. Observe that

(2|Y1|+ 1) + (2|Y2|+ 1) = |NGπ(Y1)|+ |NGπ(Y2)|
= |NGπ(Y1) ∩NGπ(Y2)|+ |NGπ(Y1) ∪NGπ(Y2)|
= |NGπ(Y1) ∩NGπ(Y2)|+ |NGπ(Y1 ∪ Y2)|.

Assume first that Y1∩Y2 = ∅. Then |NGπ(Y1)∩NGπ(Y2)| ≤ 1 as otherwise |NGπ(Y1∪Y2)| ≤
2(|Y1|+ |Y2|) = 2|Y1 ∪Y2|, contradicting the assumption of Case 2. If |NGπ(Y1)∩NGπ(Y2)| = 1,
then |NGπ(Y1 ∪ Y2)| = 2|Y1 ∪ Y2|+ 1 and so Y1 ∪ Y2 is dangerous.

Now consider the case when Y1 ∩ Y2 6= ∅. Then

|NGπ(Y1) ∩NGπ(Y2)|+ |NGπ(Y1 ∪ Y2)| ≥ |NGπ(Y1 ∩ Y2)|+ |NGπ(Y1 ∪ Y2)|
≥ (2|Y1 ∩ Y2|+ 1) + (2|Y1 ∪ Y2|+ 1)

= (2|Y1|+ 1) + (2|Y2|+ 1).

Therefore we have equality throughout, implying that both Y1∩Y2 and Y1∪Y2 are dangerous.

Let Z be an inclusionwise maximal dangerous set.

Subcase 2.1. There is no dangerous set disjoint from Z.
First we show that if a pair s1, s2 ∈ NGπ(t) is not feasible for a buyer t ∈ T − Z, then

s1, s2 ∈ NGπ(Z). Indeed, if {s1, s2} is not feasible for t, then there is a dangerous set X
belonging to t with s1, s2 ∈ NGπ(X). Since t /∈ X ∪Z and Z ∩X 6= ∅ by the assumption of the
subcase, Claim 3(b) can be applied and we get that X ∪ Z is dangerous as well. The maximal
choice of Z implies X ∪ Z = Z, hence Z belongs to t and s1, s2 ∈ NGπ(Z).

Now take an arbitrary buyer t0 ∈ T − Z who shares a neighbor with Z and let s0 ∈
NGπ(t) ∩ NGπ(Z). Let σ′ be an arbitrary ordering of the items in S − NGπ(Z). Furthermore,
Let G′′ be the graph obtained by deleting the items in S − (NGπ(Z) − s0) and the buyers in
T − Z. As every edge is contained in a (1, 2)-factor, G′′ admits a (1, 2)-factor as well. By
induction, there exists an adequate ordering σ′′ of the items in G′′. Finally, let σ′′′ denote the
trivial ordering of the single element set {s0}. Let σ := (σ′, σ′′, σ′′′). Then any buyer t ∈ T −Z
will choose at most one item from NGπ(Z), hence the adequateness of σ follows from that of σ′′

and the assumption of the subcase.
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ing to the instance on Figure 1, where Z is
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trivial ordering of the one element set
{s2}.

Figure 3: An illustration of the inductive step in Subcase 2.2.2.

Subcase 2.2. There exists a dangerous set disjoint from Z.
Let X be an inclusionwise minimal dangerous set disjoint from Z.

Subcase 2.2.1. For any t ∈ X and for any s1, s2 ∈ NGπ(t), the set {s1, s2} is feasible.
Take an item s0 ∈ NGπ(X) that has a neighbor t0 ∈ T − X. Let G′ denote the graph

obtained by deleting X and NGπ(X) − s0. It is not difficult to check that G′ admits a (1, 2)-
factor as well. By induction, there exists an adequate ordering σ′ of the items in G′. Let σ′′ be
an arbitrary ordering of the items in NGπ(X)− s0, and define σ := (σ′, σ′′). Then t0 chooses at
most one item from NGπ(X) (namely s0) as she has at least one neighbor outside of NGπ(X)
and those items have smaller indices in the ordering. Thus the adequateness of σ follows from
that of σ′ and from the assumption that any pair s1, s2 ∈ NGπ(t) form a feasible set for t ∈ X.

Subcase 2.2.2. There exists t ∈ X and s1, s2 ∈ NGπ(t) such that {s1, s2} is not feasible.
The following claim is the key observation of the proof.

Claim 4. X ∪ Z = T and NGπ(X) ∩NGπ(Z) = {s1, s2}.

Proof. Let Y ⊆ T − t be a dangerous set with s1, s2 ∈ NGπ(t). As t ∈ T − (Z ∪ Y ) and Z is
inclusionwise maximal, either Y ⊆ Z or Y ∩ Z = ∅ by Claim 3(b). In the latter case, X and
Y are dangerous sets with X ∪ Y ( T . Furthermore, |NGπ(X) ∩NGπ(Y )| ≥ 2 since s1 and s2
are contained in both. Hence, by Claim 3(a), X ∩ Y 6= ∅. But then X ∩ Y is dangerous by
Claim 3(b), contradicting the minimality of X. Therefore Y ⊆ Z. By Claim 3(a), X ∪ Z = T .
As |NGπ(X)| = 2|X|+1, |NGπ(Z) = 2|Z|+1, and |S| = 2|T | = 2|T |+2|Z|, the claim follows.

LetG′ andG′′ denote the graphs obtained by deletingX∪(NGπ(X)−s2) and Z∪NGπ(Z)−s2,
respectively. As every edge is contained in a (1, 2)-factor, both G′ and G′′ admit a (1, 2)-
factor. By induction, there exists adequate orderings σ′ and σ′′ of the items in G′ and G′′,
respectively. Finally, let σ′′′ denote the trivial ordering of the single element set {s2}. Let
σ := (σ′, σ′′|NGπ (X)−s1 , σ

′′′). We claim that σ is adequate. Indeed, if a buyer t ∈ Z arrives first,
then she chooses two items from NGπ(Z) − s2 according to σ′. As σ′ is adequate for G′ and
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G′′− s1 + s2 has a (1, 2)-factor, the remaining graph has a (1, 2)-factor as well. If a buyer t ∈ X
arrives first, then she chooses two items from NGπ(X) − s2. By Claim 4, these items form a
feasible set.

Case 3. |NGπ(T ′)| = 2|T ′| for some ∅ 6= T ′ ( T .
We claim that there exists a set T ′ satisfying the assumption if and only if Gπ is not

connected. Indeed, if Gπ is not connected, then necessarily the number of items is exactly twice
the number of buyers in every component as the graph is supposed to have a (1, 2)-factor. To see
the other direction, let S′ := NGπ(T ′), T ′′ := T − T ′, S′′ := S − S′, and consider the subgraphs
G′ := Gπ[T ′ ∪ S′] and G′′ := Gπ[T ′′ ∪ S′′]. As every tight edge is legal and all the vertices in
S′ are matched to vertices in T ′ in any optimum b-matching, Gπ contains no edges between T ′′

and S′. Therefore Gπ is not connected, and it is the union of G′ and G′′. By induction, there
exist adequate orderings σ′ and σ′′ of S′ and S′′, respectively. Then the ordering σ := (σ′, σ′′)
is adequate with respect to π.

By Lemma 2, π can be determined in polynomial time. Then, the inductive proof provides a
polynomial time algorithm for determining an adequate ordering for Gπ. To see this, it remains
to show that one can find an inclusionwise maximal or minimal dangerous set, if exists, in Gπ.
This can be done as follows: take two copies of each vertex t ∈ T , and connecting them to
the vertices in NGπ(t). Furthermore, add a dummy vertex w0 to the graph and connect it to
every vertex in S. Let G′ = (S′, T ′;E′) denote the graph thus obtained. For a set Y ⊆ T ,
let Y ′ ⊆ T ′ consist of the copies of the vertices in Y plus the vertex w0. It is not difficult to
check that Y ⊆ T is an inclusionwise minimal or maximal dangerous set of Gπ if and only if
Y ′ is an inclusionwise minimal or maximal subset of T ′ with |NG′(Y ′)| = |Y ′|. Hence Y can be
determined by relying on Kőnig’s alternating path algorithm [21].

Remark 9. Theorem 3 settles the existence of optimal dynamic prices when the demand of
each buyer is exactly two. However, the proof can be straightforwardly extended to the case
when the demand of each buyer is at most two.

6 Conclusions and open problems

This work focuses on the existence of optimal dynamic prices for multi-demand valuations. By
relying on structural properties of an optimal dual solution, we gave polynomial-time algorithms
for determining such prices for unit-demand markets and for multi-demand markets up to three
buyers, thus giving new interpretations of results of Cohen-Addad et al. and Berger et al. We
also proved that any bi-demand market has a dynamic pricing scheme that achieves optimal
social welfare. An open problem is to decide the existence of optimal dynamic prices in multi-
demand markets in general.
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[21] D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre.
Mathematische Annalen, 77(4):453–465, 1916.

[22] K. Murota and A. Shioura. M-convex function on generalized polymatroid. Mathematics
of Operations Research, 24(1):95–105, 1999.

[23] N. Nisan and I. Segal. The communication requirements of efficient allocations and sup-
porting prices. Journal of Economic Theory, 129(1):192–224, 2006.

[24] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24. Springer
Science & Business Media, 2003.

[25] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal of
Finance, 16(1):8–37, 1961.
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Appendix

Our goal is to give optimal dynamic pricing schemes for multi-demand markets with at most
three buyers and for bi-demand markets, without assuming (OPT). In both cases, the proof is
based on the following idea: We add small valued dummy items to the market so that (OPT)
is satisfied, then we determine optimal dynamic prices for the modified market, and show that
the same prices are optimal for the original instance as well.

Formally, consider a market for which (OPT) does not hold, that is, the number of items is
less than the total demand of the buyers. Let G = (S, T ;E) be the bipartite graph associated
with the market, and take a minimum weighted covering π provided by Lemma 2. For ease of
discussion, let us denote the set of buyers who might receive less items than their demand in
an optimal solution by

T̂ := {t ∈ T | dM (t) < b(t) for some maximum weight b-matching M}.

We call the items in S real. Now extend the graph by adding a set Ŝ of b(T ) − |S| dummy
items; we refer to edges going between these items and buyers as dummy edges. We define the
value of a dummy item (and so the weight of the corresponding dummy edge) to be 2ε for each
buyer, where ε := 1/4 ·∆(π). By Lemma 2(b) and the assumption that every item is used in
every optimal allocation, ε is strictly positive, hence the modified instance satisfies (OPT). Let
G+ = (S+, T, E+) and w+ denote the graph and weight function thus obtained, respectively.
It is not difficult to check that the maximum weight b-factors of G+ are exactly those that can
be obtained from a maximum weight b-matching of G by adding |Ŝ| dummy edges.

Lemma 4. There exists a minimum weighted covering π+ of w+ such that
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(a) π+(t) = ε for each t ∈ T̂ ,

(b) π+(t) > ε for each t ∈ T − T̂ , and

(c) if t ∈ T̂ , s ∈ S and st is not legal, then w(st)− π+(s) < 0.

Furthermore, such a π+ can be determined in polynomial time.

Proof. Let π+ be an extension of π by setting π+(ŝ) := 2ε for ŝ ∈ Ŝ. It is not difficult to check
that π+ is a weighted covering of w+. Furthermore, as the total value of π+ equals the total
value of π plus 2ε|Ŝ| which is exactly the difference between the maximum weight of a b-factor
in G+ and the maximum weight of a b-matching in G, π+ is a minimum weighted covering.

Now increase π+(t) by ε for t ∈ T and decrease π+(s) by ε for s ∈ S+. As (OPT) holds
for the modified instance, the total value of π+ does not change, hence it remains a minimum
weighted covering. By Lemma 2(b), π(t) = 0 for t ∈ T̂ and π(t) > 0 otherwise. Furthermore, by
the assumption that every item is used in every optimal allocation, π(s) > 0 for s ∈ S. These
together show that π+ satisfies (a) and (b).

By Lemma 2(a), for every st ∈ E such that t ∈ T̂ , s ∈ S, and st is not legal, we have
w(st) − π(s) < π(t) = 0, therefore w(st) − π+(s) < 0 by the choice of ε. This proves the last
part of the claim.

A. Multi-demand markets up to three buyers

Theorem 2 (Berger et al.). Every multi-demand market up to three buyers admits an optimal
dynamic pricing scheme, and such prices can be computed in polynomial time.

Proof. For a single buyer, the statement is meaningless.

For two buyers t1 and t2, if the dummy items are in NG+

π+
(t1) ∩ NG+

π+
(t2), labelling items

in NG+

π+
(t1) − (NG+

π+
(t1) ∩ NG+

π+
(t2)) and NG+

π+
(t2) − (NG+

π+
(t1) ∩ NG+

π+
(t2)) by 1 and items

in NG+

π+
(t1) ∩ NG+

π+
(t2) by 2 results in optimal allocations, because for i = 1, 2, buyer ti

has positive utility for all real items in NG+

π+
(ti), negative utility for items not in NG+

π+
(ti),

and she prefers items in NG+

π+
(ti) − (NG+

π+
(t1) ∩ NG+

π+
(t2)). If the dummy items are in, say,

NG+

π+
(t1)− (NG+

π+
(t1)∩NG+

π+
(t2)), we chose max{0, b2 − |NG+

π+
(t2)− (NG+

π+
(t1)∩NG+

π+
(t2))|}

items from NG+

π+
(t1) ∩ NG+

π+
(t2) and increase their prices by ε. This way, t2 gets all items

which are legal only for her and she gets max{0, b2−|NG+

π+
(t2)− (NG+

π+
(t1)∩NG+

π+
(t2))|} items

from NG+

π+
(t1) ∩NG+

π+
(t2) as her utility is still positive for them. Buyer t1 takes real items in

NG+

π+
(t1)−(NG+

π+
(t1)∩NG+

π+
(t2)) and the items in NG+

π+
(t1)∩NG+

π+
(t2) whose prices remained

unchanged.

Now we turn to the case of three buyers. Add dummy items to the instance as described
before, and let π+ be a minimum weighted covering provided by Lemma 4. Let t1, t2 and t3
denote the buyers, and let bi, vi, and ui denote the demand, valuation, and utility function
corresponding to buyer ti, respectively. For I ⊆ {1, 2, 3}, let XI ⊆ S+ denote the set of
items that are legal exactly for buyers with indices in I, that is, XI :=

(⋂
i∈I NG+

π+
(ti)
)
−(⋃

i/∈I NG+

π+
(ti)
)
. Without loss of generality, we may assume that b1 ≥ b2 ≥ b3. However, unlike

before, we cannot assume X1 = X2 = X3 = ∅ due to the presence of dummy items.
Similarly to the case when property (OPT) holds, we define a labeling Θ : S+ → {1, 2, 3, 4, 5}

such that any bi items with the smallest labels in NG+

π+
(ti) form a feasible set for ti. That is,

for an appropriately small δ > 0, setting the prices to π+(s) + δ · Θ(s) for each item s where
δ := ∆(π+)/(|S|+1), results in optimal dynamic prices for the modified instance. Unfortunately,
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when the prices are restricted to the set of original items, optimality might not met due to the
absence of dummy items. This is because a buyer might replace the missing dummy items by
real items that she did not take before, which results in a suboptimal solution. To resolve this,
as in the bi-demand case, we further increase the prices by ε to ensure that buyers have negative
utility from items they should not choose. Notice that Observation 10 holds again.

We have seen, when the market satisfy the property (OPT) and X1 = X2 = X3 = ∅, it is
enough to ensure {s ∈ Xij ∪Xik | Θ(s) ≤ 4− i} ⊆ F for {i, j, k} = {1, 2, 3}, where F be a set of
bi items with the largest utility for ti. Now, if there are ŝ dummy items with label Θ(ŝ) ≤ 4− i,
ti simply skips them, so we also have to ensure she does not take too much real items with label
greater than 4− i. If some Xi (i ∈ {1, 2, 3}) is not empty, but it contains only real items, if we
label them by 0, ti always buys them, therefore we can reduce the problem to the case when
Xi is empty and the demand of ti is bi− |Xi|. If some Xi contains dummy items, the reduction
will be more difficult. The following claim shows how the conditions for the feasible sets change
when X1 = X2 = X3 = ∅:

Claim 5. Assume X1 = X2 = X3 = ∅. Let i ∈ {1, 2, 3} and let F be the following set: if ti
has at positive utility for at least bi items in NG+

π+
(ti), F is the set of the first bi items with the

largest utility. If ti has at positive utility for less than bi items in NG+

π+
(ti), F contains all of

them. If

(a) F contains all real items in {s ∈ Xij ∪Xik | Θ(s) ≤ 4− i},
(b) The difference bi − |F | is at least the number of dummy items in {s ∈ Xij ∪Xik | Θ(s) ≤

4− i},
(c) The difference bi − |F | is at most the number of dummy items in NG+

π+
(ti),

then F is feasible for ti.

Proof. Let F be a set of items in NG+

π+
(ti) as stated above. We extend F with dummy items

the following way: If there are dummy items in {s ∈ Xij ∪Xik | Θ(s) ≤ 4 − i}, we add them
to F . If the cardinality of the set we got this way is strictly less than bi, we further extend it
by adding dummy items from NG+

π+
(ti) with label at least 4 until the resulting sets cardinality

becomes bi. By 5(b) and 5(c), this can be achieved. Let F ′ denote the resulting set. Then
|F ′| = bi and F ′ contains all real and dummy items in {s ∈ Xij ∪Xik | Θ(s) ≤ 4− i}. We have
|Xij − F ′| ≤ bj and |Xik − F ′| ≤ bk. Thus we get

|NG+

π+
(tj)− F ′| = |Xij − F ′|+ |Xjk|+ |Xijk − F ′|

= |S| − |Xik − F ′| − |F ′|
≥ (bi + bj + bk)− bk − bi
= bj .

An analogous computation shows that |NG+

π+
(tk) − F ′| ≥ bk. Since we get F ′ by adding only

dummy items to F , this proves the feasibility of F .

We will apply a similar labeling procedure as when property OPT holds, then increase some
prices by ε. As dummy items are completely equivalent, either none or all of them are legal for
each buyer. We divide the proof into three cases based on whether dummy items are legal only
for two or all three of the buyers.

Case 1. The dummy items are in Xi for some i ∈ {1, 2, 3}.
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By Lemma 4, each buyer has positive utility from her legal real items and negative utility
from her non-legal items.

If the number of dummy items is bi, then all real items are non-legal for ti, and her utility
from real items is negative. Therefore we can apply the labeling procedure for the other two
buyers. Otherwise, let b′i denote the difference between bi and the number of dummy items, that
is, b′i := bi−|Ŝ|. If there are real items in Xi, we label them by 0 and decrease b′i by the number
of real items in Xi. Regardless if there are real items in Xi or not, b′i = bi− |Xi|. We delete the
dummy items from the graph and the real items from Xi, if there is any, then apply the labeling
procedure for three buyers, but with b′i in place of bi. Now |{s ∈ Xij ∪Xik | Θ(s) ≤ 4− i}| ≤ b′i.
We select max(0, b′i−|{s ∈ Xij ∪Xik | Θ(s) ≤ 4− i}|) items from Xijk ∪{s ∈ Xij ∪Xik | Θ(s) >
4 − i}, starting with the items with lower labels, and leave their prices unchanged, while the
prices of all other items in Xijk ∪{s ∈ Xij ∪Xik | Θ(s) > 4− i} are increased by ε. This way we
achieve that ti has non-negative utility from exactly b′i items. Despite the price increasing, tj
(j 6= i) has positive utility for all items in NG+

π+
(tj) and since we start the price increasing with

the items with lower labels, the order of items in NG+

π+
(tj) does not change, and the conditions

of Claim 5 hold.

From now on, we can assume X1 = X2 = X3 = ∅. Otherwise, we label the items in Xi by
0, delete them from the graph, and replace bi by bi − |Xi|.

Case 2. The dummy items are in X13.
We apply a similar labeling procedure that we used when the market satisfies property

(OPT). The items in X123 get label 5. As before, items in Xij are labeled by 4, θ or 1, where
θ = 3 if {i, j} = {1, 2}, otherwise θ = 2. However, dummy items are preferred to get higher
labels. That is, we label as many dummy items by 4 as possible, and if the number of dummy
items is more than the number of items to be labeled by 4, we proceed with labeling dummy
items by 2, and then by 1 if necessary. The proof of Theorem 8 shows that ti takes every item
in {s ∈ Xij ∪Xik | Θ(s) ≤ 4− i}.

We distinguish three subcases:
Subcase 1. |{s ∈ X13 | Θ(s) = 1}| + |{s ∈ X23 | Θ(s) ≤ 2}| > b3 and there is no item in X13

with label 1.
We do not change the prices in X23. If b1 ≤ |X13|+ |{s ∈ X12 | Θ(s) ≤ 3}|, we increase the

prices in {s ∈ X12 | Θ(s) = 4}∪X123 by ε, otherwise we select b1−(|X13|+|{s ∈ X12 | Θ(s) ≤ 3})
items from {s ∈ X12 | Θ(s) = 4} ∪X123, starting with the ones in X12. We leave the prices of
the selected items unchanged, but we increase the prices of items in {s ∈ X12 | Θ(s) = 4}∪X123

which were not selected by ε. This way, t3 takes all items in X23 with label 1 (remember, there
are no items in X13 with label 1) as they are real items. t2 takes all items in X23 with label
1 and 2, since their prices were not increased. If b1 ≤ |X13| + |{s ∈ X12 | Θ(s) ≤ 3}|, t1 takes
all items from {s ∈ X12 | Θ(s) ≤ 3} as these are real items, and t1 gets all real or dummy
items in {s ∈ X12 | Θ(s) ≤ 2}, since we increased the prices in {s ∈ X12 | Θ(s) = 4} ∪X123. If
b1 > |X13| + |{s ∈ X12 | Θ(s) ≤ 3}|, t1 gets X13 and all items in X12 ∪ X123 with unchanged
prices. In both cases, t1 takes all real items in X12 with label 1 and 3, and she also takes all
real items in X13 with label 2. Moreover, the difference between b1 and the real items she takes
is at least the number of dummy items in X13 with label 1 and 2. The way we increased some
prices, we ensured conditions 5(b), 5(c) are fulfilled.

Subcase 2. |{s ∈ X13 | Θ(s) = 1}| + |{s ∈ X23 | Θ(s) ≤ 2}| > b3 and exists an item in X13

with label 1.
As in the previous case, we need to ensure 5(b), 5(c) hold. In this case, |{s ∈ X13 |

Θ(s) > 1}| = b1 and |{s ∈ X13 | Θ(s) = 1}| + |{s ∈ X23 | Θ(s) ≤ 2}| > b3, which implies
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|X12|+ |X123|+ |{s ∈ X23 | Θ(s) = 4}| = b2, therefore there is no item in X12 with label 1 or 3.
We increase the prices in X12 ∪X123 by ε. We select b3 − |{s ∈ X13 | Θ(s) = 1}| − |{s ∈ X23 |
Θ(s) = 1}| items from {s ∈ X23 | Θ(s) = 2} (the assumption |{s ∈ X13 | Θ(s) = 1}| + |{s ∈
X23 | Θ(s) ≤ 2}| > b3 shows this can be done), and leave their prices unchanged, but we increase
the prices of the remaining items in {s ∈ X23 | Θ(s) = 2} by ε, and we also increase the prices
in {s ∈ X23 | Θ(s) = 4} by ε. This way, t1 only takes items from X13, which is enough, since
there are no items in X12 with label 1 or 3. t2 takes all items in X23 with label 1 and 2, and t3
takes all real items in X13 ∪X23 with label 1.

Subcase 3. |{s ∈ X13 | Θ(s) = 1}|+ |{s ∈ X23 | Θ(s) ≤ 2}| ≤ b3.
In the case when property (OPT) holds, t1 could choose freely from {s ∈ X12∪X13 | Θ(s) =

4} when |{s ∈ X12 ∪ X13 | Θ(s) ≤ 3}| < b1, now we will force her to buy as many items
from {s ∈ X13 | Θ(s) = 4} as possible. We do this in the following way: if |X13| + |{s ∈
X12 | Θ(s) ≤ 3}| ≥ b1, we increase the prices in {s ∈ X12 | Θ(s) = 4} ∪ X123 by ε. If
|X13|+ |{s ∈ X12 | Θ(s) ≤ 3}| < b1, we choose b1 − (|X13|+ |{s ∈ X12 | Θ(s) ≤ 3}|) items from
{s ∈ X12 | Θ(s) = 4}, and if the items in {s ∈ X12 | Θ(s) = 4} are not enough, we further
choose from X123. We increase the prices of the others in {s ∈ X12 | Θ(s) = 4} ∪X123 which
were not chosen by ε. We do the same with t3. If we have to choose items from X123, we start
with the items which are chosen because of t1, if there is any. If there is no chosen item because
of t1 or we have to choose more, we choose from the items with increased price, but we decrease
their price by ε. First, we check the case when the first buyer is t1, and assume we increased the
price of all items in X123. If |X13|+ |{s ∈ X12 | Θ(s) ≤ 3}| ≥ b1, then t1 has negative utility for
the items not in X13 ∪ {s ∈ X12 | Θ(s) ≤ 3}. Since |{s ∈ X13 ∪X12 | Θ(s) ≤ 3}| ≤ b1, t1 takes
all real items in {s ∈ X13 | Θ(s) ≤ 3} and she also takes real items in {s ∈ X13 | Θ(s) ≤ 2}. By
the price increasing, 5(b) and 5(c) also hold. If |X13|+ |{s ∈ X12 | Θ(s) ≤ 3}| < b1, t1 gets all
real items in X13∪{s ∈ X12 | Θ(s) ≤ 3} and the items in {s ∈ X12 | Θ(s) = 4} whose price were
not changed. One can verify that 5(b) and 5(c) hold again. If there are items in X123 with
unchanged prices, and the number of them is b1−|X12|−|X13|, t1 gets all real items in X13, X12

and the items in X123 whose price were not changed. 5(b) and 5(c) hold again. The remaining
case is when exists at least one item in X123 whose price was not changed and the number of
items in X123 with unchanged prices is greater than b1−|X12|− |X13|. That means we left their
prices unchanged because of t3, that is |X13|+ |X23| < b3. That also means there is no item in
X13 with label 1 or 2. It is not difficult to see that t1 takes all items in {s ∈ X12 | Θ(s) ≤ 3}.
Secondly, if the first buyer is t3, the reasoning goes the same way as with t1: if we increased
the price of all items in X123 and |X13| + |{s ∈ X23 | Θ(s) = 1}| ≥ b3, then t3 has negative
utility for the items not in X13 ∪{s ∈ X23 | Θ(s) = 1}. Since |{s ∈ X13 ∪X23 | Θ(s) = 1}| ≤ b3,
t3 takes all real items in {s ∈ X13 | Θ(s) = 1} and she also gets {s ∈ X23 | Θ(s) = 1}. If
|X13| + |{s ∈ X23 | Θ(s) = 1}| < b3, t3 buys all real items in X13 ∪ {s ∈ X23 | Θ(s) = 1} and
the items in {s ∈ X23 | Θ(s) > 1} whose price were not changed. 5(b) and 5(c) holds again.
If there are items in X123 with unchanged prices, and the number of them is b3− |X13| − |X23|,
t3 buys all real items in X13, X23 and the items in X123 whose price were not changed. When
exists at least one item in X123 whose price was not changed and the number of items in
X123 with unchanged prices is greater than b3 − |X13| − |X23|, |X12| + |X13| < b1 holds. That
means there is no item in X13 with label 1. It is not difficult to see that t3 gets all items in
{s ∈ X23 | Θ(s) = 1}. It is not difficult to check 5(b) and 5(c) holds. Finally, if the first buyer
is t2, she gets all items in {s ∈ X23 | Θ(s) ≤ 2} ∪ {s ∈ X12 | Θ(s) = 1} as we only increased
prices in {s ∈ X12 ∪X23 ∪X123 | Θ(s) ≥ 4}.

Case 3. The dummy items are in X12.
The initial labeling procedure is the same as in Case 2, then we increase some of the prices.
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First, we want to ensure 5(b), 5(c) holds if t1 is the first buyer. We do this the following way:
if |X12| + |{s ∈ X13 | Θ(s) ≤ 2}| ≥ b1, we increase the prices in {s ∈ X13 | Θ(s) = 4} ∪ X123

by ε. If |X12| + |{s ∈ X13 | Θ(s) ≤ 2}| < b1, we choose b1 − (|X12| + |{s ∈ X13 | Θ(s) ≤ 2}|)
items from {s ∈ X13 | Θ(s) = 4}, and if the items in {s ∈ X13 | Θ(s) = 4} are not enough, we
further choose from X123. We increase the prices of the others in {s ∈ X13 | Θ(s) = 4} ∪X123

which were not chosen by ε. We proceed similarly with t2 instead of t1 to ensure 5(b), 5(c)
holds if she is the first buyer in the market. If |X12|+ |{s ∈ X23 | Θ(s) ≤ 2}| ≥ b2, we increase
the prices in {s ∈ X23 | Θ(s) = 4} ∪ X123 by ε. If |X12| + |{s ∈ X23 | Θ(s) ≤ 2}| < b2, we
choose b2 − (|X12|+ |{s ∈ X23 | Θ(s) ≤ 2}|) items from {s ∈ X23 | Θ(s) = 4}, and if the items
in {s ∈ X23 | Θ(s) = 4} are not enough, we further choose from X123. We increase the prices
of the others in {s ∈ X23 | Θ(s) = 4} ∪X123 which were not chosen by ε. If we have to choose
items from X123, we start with the items which are chosen because of t1, if there is any. If
there is no chosen item because of t1 or we have to choose more, we choose from the items with
increased price, but we decrease their price by ε.

Now let us assume t1 is the first buyer. We also assume first that we increased the price of
all items in X123. t1 gets all items from {s ∈ X13 | Θ(s) ≤ 2} and she also takes the real items
in {s ∈ X12 | Θ(s) ≤ 3}. If |X12|+ |{s ∈ X13 | Θ(s) ≤ 2}| < b1, she buys all real items in X12,
{s ∈ X13 | Θ(s) ≤ 2} and the items in {s ∈ X13 | Θ(s) = 4} whose price were not changed. If
there are items in X123 with unchanged prices, and the number of them is b1− |X12| − |X13|, t1
gets all items in X12, X13 and the items in X123 whose price were not changed. The remaining
case is when exists at least one item in X123 whose price was not changed and the number of
items in X123 with unchanged prices is greater than b1−|X12|− |X13|. That means we left their
prices unchanged because of t2, that is |X12|+ |X23| < b2. That also means there is no item in
X12 with label 1 or 3. It is not difficult to see that t1 buys all items in {s ∈ X13 | Θ(s) ≤ 2},
as their prices are unchanged. If t2 is the first buyer, the reasoning goes similarly. The only
thing which is different from the previous case is when there exists at least one item in X123

with unchanged price, but the number of these items is greater than b2− |X12| − |X23|. Now, it
means b1 > |X12|+ |X13|, which does not mean there are no items in X12 with label 1 or 3, it
only means there are no items in X12 with label 1, but that is enough as t2 has to buy all real
items in X12 with label 1, if there is any, but she can leave real items in X12 with label 3 or 4.
If the first buyer is t3, she takes all items in {s ∈ X13 ∪X23 | Θ(s) = 1}.

Case 4. The dummy items are in X23.
We start with the same labeling procedure as in Case 2 and Case 3. We distinguish five

subcases:
Subcase 1. |{s ∈ X23 | Θ(s) ≤ 2}|+ |{s ∈ X12 | Θ(s) ≤ 3}| > b2 and there is at least one item
in X23 with label 2.

The assumption that there is at least one item in X23 with label 2 shows |{s ∈ X23 | Θ(s) =
4}| = b3, thus with |{s ∈ X23 | Θ(s) ≤ 2}|+ |{s ∈ X12 | Θ(s) ≤ 3}| > b2, it implies |X13| < b1,
therefore there is no item in X13 with label 1. We increase the prices in X13 ∪ X123 by ε. If
|{s ∈ X23 | Θ(s) ≤ 2}| + |{s ∈ X12 | Θ(s) = 1}| ≥ b2, we increase the prices in {s ∈ X12 |
Θ(s) = 3} ∪ {s ∈ X12 | Θ(s) = 4} by ε. If |{s ∈ X23 | Θ(s) ≤ 2}|+ |{s ∈ X12 | Θ(s) = 1}| < b2,
we select some items from {s ∈ X12 | Θ(s) = 3} such way that the number of the selected items
are b2 − |{s ∈ X23 | Θ(s) ≤ 2}| + |{s ∈ X12 | Θ(s) = 1}|, and leave their prices unchanged,
but we increase the prices of the unselected items in X12 with label 3 and the prices of the
label 4 items in X12 by ε. This way, if t1 comes first, she gets {s ∈ X12 | Θ(s) ≤ 3} and
{s ∈ X13 | Θ(s) = 2} (remember, there are no items in X13 with label 1). If t2 comes first, she
takes {s ∈ X12 | Θ(s) = 1} and the real items in {s ∈ X23 | Θ(s) ≤ 2}. If t3 comes first, she
gets the real items in {s ∈ X23 | Θ(s) = 1}. The price increasing shows 5(b) and 5(c) holds.
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Subcase 2. |{s ∈ X23 | Θ(s) ≤ 2}|+ |{s ∈ X12 | Θ(s) ≤ 3}| > b2 and there are no items in X23

with label 2.
We leave all prices unchanged. If t1 comes first, she takes {s ∈ X13 | Θ(s) ≤ 2} and

{s ∈ X12 | Θ(s) ≤ 3}. If t2 or t3 comes first, they get all real items in {s ∈ X12 | Θ(s) = 1} and
{s ∈ X13 | Θ(s) = 1}, respectively. As the dummy items are in {x ∈ X23 | Θ(s) = 4}, 5(b),
5(c) holds automatically.

Subcase 3. |{s ∈ X23 | Θ(s) ≤ 2}|+ |{s ∈ X12 | Θ(s) ≤ 3}| ≤ b2, |{s ∈ X23 | Θ(s) = 1}|+ |{s ∈
X13 | Θ(s) ≤ 2}| > b3 and exists an item in X23 with label 1.

The assumption that there is at least one item in X23 with label 1 shows |{s ∈ X23 | Θ(s) >
1}| = b2, thus with |{s ∈ X23 | Θ(s) = 1}|+ |{s ∈ X13 | Θ(s) ≤ 2}| > b3, it implies |X13| < b1,
therefore there is no item in X13 with label 1. We increase the prices in X12 ∪X123 by ε. We
also increase the prices in {s ∈ X13 | Θ(s) > 1}.

If t1 comes first, she takes {s ∈ X12 | Θ(s) = 3} (there are no items in X12 with label 1) and
{s ∈ X13 | Θ(s) ≤ 2}, as in NGπ(t1), we only left the prices unchanged in {s ∈ X13 | Θ(s) = 1},
which means the order of items in NGπ(t1) remained unchanged. If t2 comes first, she gets the
real items in {s ∈ X23 | Θ(s) ≤ 2}. If the first buyer is t3, she takes {s ∈ X13∪X23 | Θ(s) = 1}.
Therefore all three conditions of Claim 5 hold again.
Subcase 4. |{s ∈ X23 | Θ(s) ≤ 2}|+ |{s ∈ X12 | Θ(s) ≤ 3}| ≤ b2, |{s ∈ X23 | Θ(s) = 1}|+ |{s ∈
X13 | Θ(s) ≤ 2}| > b3 and there is no item in X23 with label 1.

If |X23|+ |{s ∈ X12 | Θ(s) ≤ 3}| ≥ b2, we increase the prices in {s ∈ X12 | Θ(s) = 4} ∪X123

by ε. If |X23| + |{s ∈ X12 | Θ(s) ≤ 3}| < b2, we select b2 − (|X23| + |{s ∈ X12 | Θ(s) ≤ 3}|)
items from {s ∈ X12 | Θ(s) = 4} ∪X123, starting with the items in {s ∈ X12 | Θ(s) = 4}, and
we increase the prices of the unselected items in {s ∈ X12 | Θ(s) = 4} ∪X123 by ε.

When the first buyer is t1, she takes {s ∈ X12 | Θ(s) ≤ 3}∪{s ∈ X13 | Θ(s) ≤ 2}, as we only
increased prices of items with label 4 or 5. If the first buyer is t2, she gets {s ∈ X23 | Θ(s) = 2}
(remember, there is no item in X23 with label 1) and she also buys {s ∈ X12 | Θ(s) ≤ 3} as
these are real items and |{s ∈ X23 | Θ(s) = 2}| + |{s ∈ X12 | Θ(s) ≤ 3}| ≤ b2. If t3 is the first
buyer, she gets {s ∈ X13 | Θ(s) = 1}. Observe that the conditions of Claim 5 hold.
Subcase 5. |{s ∈ X23 | Θ(s) ≤ 2}| + |{s ∈ X12 | Θ(s) ≤ 3}| ≤ b2 and |{s ∈ X23 | Θ(s) =
1}|+ |{s ∈ X13 | Θ(s) ≤ 2}| ≤ b3.

To ensure 5(b) and 5(c). holds, we increase some prices the following way: If |X23|+ |{s ∈
X12 | Θ(s) = 1}| ≥ b2, we increase the prices in {s ∈ X12 | Θ(s) > 1} ∪ X123 by ε. If
|X23|+ |{s ∈ X12 | Θ(s) = 1}| < b2, we choose b2 − (|X23|+ |{s ∈ X12 | Θ(s) = 1}|) items from
{s ∈ X12 | Θ(s) > 1}, and if the items in {s ∈ X12 | Θ(s) > 1} are not enough, we further choose
from X123. We increase the prices of the others in {s ∈ X12 | Θ(s) > 1} ∪X123 which were not
chosen by ε. We do the same with b3 instead of b2: If |X23| + |{s ∈ X13 | Θ(s) = 1}| ≥ b3, we
increase the prices in {s ∈ X13 | Θ(s) > 1} ∪X123 by ε. If |X23|+ |{s ∈ X13 | Θ(s) = 1}| > b3,
we choose b3 − (|X23| + |{s ∈ X13 | Θ(s) = 1}|) items from {s ∈ X13 | Θ(s) > 1}, and if the
items in {s ∈ X13 | Θ(s) > 1} are not enough, we further choose from X123. We increase the
prices of the others in {s ∈ X13 | Θ(s) > 1} ∪X123 which were not chosen by ε. If we have to
choose items from X123, we start with the items which are already chosen, if there is any. If
there is no chosen item or we have to choose more, we choose from the items with increased
price, but we decrease their price by ε.

If t1 comes first, she gets {s ∈ X12 | Θ(s) ≤ 3} and {s ∈ X13 | Θ(s) ≤ 2}, as in NG+

π+
(t1),

we only increased the prices of items with label 4 or 5. It is easy to check for t2 and t3 that
they take {s ∈ X12 ∪X23 | Θ(s) ≤ 2} and {s ∈ X13 ∪X23 | Θ(s) = 1}, respectively.

Case 5. The dummy items are in X123.
By Lemma 4, a buyer has positive utility from her legal real items and negative utility

21



from her non-legal items. We apply the same labeling procedure that we used in the proof of
Theorem 8, that is, when the market satisfies property (OPT). Thus dummy items are now
labeled by 5.

As before, ti gets all items in NG+

π+
(ti) with label no greater than 4− i, since these are real

items. That implies 5(a) and 5(b). As |NG+

π+
(ti)| ≥ bi and ti has positive utility for all real

items in NG+

π+
(ti), 5(c) automatically holds.

B. Bi-demand markets

For convenience, let S denote S+. In the proof of Theorem 3, we showed the existence of an
adequate ordering σ. In Lemma 3, we saw that, for δ := ∆(π)/(|S| + 1), setting the prices to
p(s) := π(s) + δ · σ(s) results in optimal dynamic pricing if (OPT) holds. However, when S
contains dummy items beside the real ones, the pricing defined this way might not result in an
optimal allocation. This is because when a buyer chooses items from her neighbors according to
σ, the dummy items are not there in real life, therefore the buyer might skip dummy items in its
neighborhood in G+

π+ . As a consequence, she might take two items which are not allowed to her
(that is, she takes two items from NG+

π+
(Y ) where |NG+

π+
(Y )| ≤ 2|Y |+ 1 for some ∅ 6= Y ( T )

or she might take an item which is not feasible for her (that is, the item is not her neighbor
in G+

π+). However, if we start with the minimum weighted covering π+ described in Lemma 4,
property 4(c) shows that if a buyer skips her dummy neighbors in the ordering, she does not
take real items which are not legal for her as she has negative utility for them. That is, it is
enough to ensure that if a buyer t has dummy neighbors, then she does not take two items from
NG+

π+
(Y ) for every Y set with |NG+

π+
(Y )| ≤ 2|Y | + 1, t /∈ Y when she skips dummy items in

the ordering. Recall that a set Y of buyers is dangerous if |NG+

π+
(Y )| = 2|Y | + 1 and tight if

|NG+

π+
(Y )| = 2|Y |. That means, we have to pay attention to dangerous and tight sets when

pricing the items in the market.

The idea of the proof of Theorem 3 is the following: we set the prices to p(s) := π(s)+δ ·σ(s),
where σ is an adequate ordering which is determined the same way as previously with the
property (OPT). Then we increase some of the prices by ε to ensure that if a buyer has dummy
items as neighbors, she will not take two items from NG+

π+
(Y ) if Y is a dangerous or tight set.

We will use the following observations.

Observation 10.

(a) In G+
π+ , the neighborhoods of dummy items are the same. As a result, for every Y ⊆ T ,

all dummy items are in NG+

π+
(Y ) or all of them are in S −NG+

π+
(Y ),

(b) A buyer t ∈ T̂ has negative utility for a real item s if st is not legal, therefore buyers in T̂
only take items that are feasible for them. Also, buyers in T − T̂ take only feasible items
as they have at least b(t) neighbors in G+

π+ ,

(c) By the choice of ε, if we increase p(s) by ε for some item s, the utility of t ∈ T̂ for s
becomes negative,

(d) By the choice of ε, if t ∈ T − T̂ , st is an edge in G+
π+ , and we increase p(s) by ε, the utility

of t for s remains positive and still higher than for any s′ where s′t is not legal.

Now we are ready to prove Theorem 3 without assuming (OPT).

Theorem 3. Every bi-demand market admits an optimal dynamic pricing scheme, and such
prices can be computed in polynomial time.
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Proof. As before, we prove by induction on |T |, and the proof goes very similarly to the proof
with the (OPT) assumption. The statement holds when |T | = 1, therefore |T | ≥ 2 can be
assumed.

Case 1. |NG+

π+
(Y )| ≥ 2|Y |+ 2 for every ∅ 6= Y ( T .

For any t ∈ T and s1, s2 ∈ NG+

π+
(t), the graph Gπ − {s1, s2, t} still satisfies the condi-

tions of Theorem 6(a), hence {s1, s2} is feasible for t. Therefore σ can be chosen arbitrarily,
since the current pricing ensures buyers will not buy items which are not optimal for them
(Observation 10(b)).

Case 2. |NG+

π+
(Y )| ≥ 2|Y | + 1 for ∅ 6= Y ( T and there exists Y dangerous set, that is

|NG+

π+
(Y )| = 2|Y |+ 1.

Let Z be an inclusionwise maximal dangerous set.

Subcase 2.1. There is no dangerous set disjoint from Z.
We have already shown in Section 5 that if a pair s1, s2 ∈ NG+

π+
(t) is not feasible for a buyer

t ∈ T − Z, then s1, s2 ∈ NG+

π+
(Z).

First we consider the case when |S−NG+

π+
(Z)| ≥ 2. If t ∈ T −Z and t has only one neighbor

in S−NG+

π+
(Z), then for T ′ = Z+t0 6= T we get |NG+

π+
(T ′)| = 2|T ′|. This case will be discussed

later on (see Case 3). From now on, we assume that each t ∈ T − Z has at least two neighbors
in NG+

π+
(Z). Similarly as in the proof when (OPT) holds, let t0 ∈ T −Z be an arbitrary buyer

who shares a neighbor with Z, and let s0 ∈ NG+

π+
(t) ∩NG+

π+
(Z). If it is possible, we choose t0

and s0 in such a way that s0 is a dummy item. Let σ′ be an arbitrary ordering of the items in
S −NG+

π+
(Z), σ′′ be an adequate ordering of the items in G′′ where G′′ is obtained by deleting

the items in S− (NG+

π+
(Z)− s0) and the buyers in T −Z, and σ′′′ be the trivial ordering of the

single element set {s0}. We consider the ordering σ = (σ′, σ′′, σ′′′) of items in S.

Subcase 2.1.1. All dummy items are in NG+

π+
(Z).

If s0 is dummy, any buyer from Z will choose items from NG+

π+
(Z) (see Observation 10(b)),

but she will not take the dummy s0. As σ′′ was an adequate ordering of the items in G′′, the
remaining graph still admits a (1, 2)-factor. Buyers from T − Z will take two real items from
S −NG+

π+
(Z) as they have at least two neighbors in S −NG+

π+
(Z).

If s0 is not dummy, we increase its price by ε. This way, buyers in Z who have dummy
neighbors have negative utility for s0, therefore such buyers will not take s0 even after the
deletion of the dummy items. If a buyer in Z has no dummy neighbors, she has at least two
cheaper neighbors in NG+

π+
(Z) than s0, which means that she will not take s0 either. Again, a

buyer from T − Z will take two items from S −NG+

π+
(Z).

Subcase 2.1.2. All dummy items are in S −NG+

π+
(Z).

We increase all prices in NG+

π+
(Z) by ε. This way, if a buyer in T − Z has less than two

real neighbors in S − NG+

π+
(Z), she will not take items from NG+

π+
(Z) by Observation 10(c).

For a buyer in Z, the order of neighbors in Gπ remains unchanged and she still prefers items in
NG+

π+
(Z) than items in S −NG+

π+
(Z) by Observation 10(d).

We finished the discussion of the case when there is no dangerous set disjoint from Z and
|S − NG+

π+
(Z)| ≥ 2. Now let us assume that |S − NG+

π+
(Z)| = 1, and let y0 denote the single

element in S − NG+

π+
(Z). As |S| = 2|T |, there is only one buyer in T − Z (namely t0). If t0
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has only two neighbors in NG+

π+
(Z), X = {t0} is a dangerous set disjoint from Z, contradicting

the assumption of Subcase 2.1. Hence t0 has at least three neighbors in NG+

π+
(Z). As before,

s0 denotes a neighbor of t0 in NG+

π+
(Z). We define σ = (σ′, σ′′, σ′′′) the same way as when

|S −NG+

π+
(Z)| ≥ 2. First, we discuss the case when y0 is a dummy item. Notice that y0 is the

only dummy item by Observation 10(a). Let y1 denote the earliest neighbor of t0 in NG+

π+
(Z)

according to σ. Let k ∈ {1, . . . , |S|} denote the place of y1 in the ordering. Then the price of
y1 is ε+ δ · k and t0 has ε− δ · k utility for y1. We increase the price of every item in NG+

π+
(Z)

by ε− δ · 2k+1
2 . As a result, t0 has positive utility only for y0 and y1, while for buyers in Z, the

utilities for their neighbors in G+
π+ remain positive and the order of items remains unchanged.

If t0 is the first buyer, she takes y0 and y1, and any buyer in Z takes items according to σ. If y0
is a real item, we do not change the prices. This way, t0 takes at most one item from NG+

π+
(Z).

A buyer from Z does not take y0, since y0 is feasible only for t0, and she does not take s0 which
is at the end of the ordering.

Subcase 2.2. There exists a dangerous set disjoint from Z.
Let X be an inclusionwise minimal dangerous set disjoint from Z.

Subcase 2.2.1. For any t ∈ X and for any s1, s2 ∈ NG+

π+
(t), the set {s1, s2} is feasible.

We define an adequate ordering σ := (σ′, σ′′) the same way as before with the (OPT)
assumption. If the dummy items are in NG+

π+
(X), a buyer from T − X who has no dummy

neighbors chooses at most one item from NG+

π+
(X) (namely s0), and a buyer from T −X who

has dummy neighbors also chooses at most one item from NG+

π+
(X), which is s0 only if s0 is

real. If s0 is dummy and the buyer has real neighbors in NG+

π+
(X), then she chooses one of

them, but if she has only dummy neighbors in NG+

π+
(X), her utility is negative from the real

items in NG+

π+
(X) by Observation 10(b), therefore she does not take anything from NG+

π+
(X).

A buyer from X takes items from NG+

π+
(X), since if she has at least two real neighbors, she

chooses two of them, but if she has at most one real neighbor, she does not take anything from
S −NG+

π+
(X) as her utility is negative for them by Observation 10(b). If the dummy items are

in S−NG+

π+
(X), we increase the prices in NG+

π+
(X)−{s0} by ε. This way, a buyer from T −X

takes at most one item from NG+

π+
(X) (which is s0), since if she has dummy neighbors, her

utility is negative from NG+

π+
(X) − {s0} by Observation 10(c), otherwise she has at least two

cheaper real neighbors in S − (NG+

π+
(X)− {s0}). A buyer from X takes items from NG+

π+
(X)

which does not cause a problem as X is an inclusionwise minimal dangerous set.

Subcase 2.2.2. There exists t ∈ X and s1, s2 ∈ NG+

π+
(t) such that {s1, s2} is not feasible.

In this case, we have already shown in the proof with assumption (OPT) that X∪Z = T and
NG+

π+
(X)∩NG+

π+
(Z) = {s1, s2}. We have defined an adequate ordering σ := (σ′, σ′′|N

G+

π+
(X)−s1 , σ

′′′),

where σ′ and σ′′ are adequate for the corresponding smaller graphs and σ′′′ is the trivial ordering
of s2. First, we assume s1 and s2 are both dummy. By Observation 10(a), that means there are
no other dummy items. Any buyer in X takes items only from NG+

π+
(X)−{s1, s2}, since if she

has at least two real neighbors, she takes two of them, but if she has at most one real neighbor,
she does not choose items which are not feasible for her (that is which are in NG+

π+
(Z)−{s1, s2})

as her utility is negative for them by Observation 10(b). The reasoning is the same for buyers
in Z. Now assume that s1 is real and s2 is dummy. We switch the roles of s1 and s2 if s2
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is real and s1 is dummy. Now any buyer in X chooses items from NG+

π+
(X) − {s2} and any

buyer in Z chooses items from NG+

π+
(Z) − {s2}, since those buyers, who are in X and have

dummy neighbor, have negative utility for NG+

π+
(Z)− {s1, s2} and those buyers, who are in Z

and have dummy neighbor, have negative utility for NG+

π+
(X)− {s1, s2}. Thirdly, if s1 and s2

are real items, we increase the price of s2 by ε. This way, if all dummy items are in NG+

π+
(Z),

any buyer from Z takes at most one item from NG+

π+
(Z) ∩NG+

π+
(X) (namely s1), since buyers

with dummy neighbors have negative utility for s2 and buyers with only real neighbors have at
least two cheaper neighbors in NG+

π+
(X)−{s2}. Buyers in X do not take s2 either as they have

cheaper neighbors in NG+

π+
(X)−{s2}. When all dummy items are in NG+

π+
(X), the proof goes

the same way.

Case 3. |NG+

π+
(T ′)| = 2|T ′| for some ∅ 6= T ′ ( T .

As we showed in the case when (OPT) holds, there exists T ′ satisfying the assumption if
and only if G+

π+ is not connected. Suppose G+
π+ has k components, and determine an adequate

ordering for the components of G+
π+ , separately. Then σ = (σ′, σ′′, . . . σ(k)) is an adequate

ordering for the whole graph, since if a buyer has no dummy neighbors, she has at least two
real neighbors in her own component, and if a buyer has dummy neighbors, she has negative
utility for all items which are not in her own component as Observation 10(b) shows.
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