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1 INTRODUCTION
Weighted matroid intersection problem is one of the major combinatorial optimization

problems solvable in polynomial time. The problem generalizes a number of relatively
unsophisticated problems such as the maximum-weight bipartite matching or minimum-
weight arborescence problems. Consider the following general formulation known as the
independent assignment problem proposed by Iri-Tomizawa.

Given a bipartite graph G = (S1, S2, A), two matroids M1 = (S1,B1) M2 = (S2,B2)
and a weight function ω : A → R , where (S1, S2) is the bipartition of the vertex set S of
the graph G and A is the set of all the edges. The aim is to find a matching M from A
which maximizes the following function:

ω(M) =
∑

ω(a)|a ∈ M (1.1)

that satisfies the following constraint:

d1(M) ∈ B1 d2(M) ∈ B2, (1.2)

where d1(M)/d2(M) represents the set of vertices in S1/S2 incident to M .
The independent assignment problem has been proved as a useful tool to formulate

engineering problems in systems analysis.

As it has been mentioned in the previous project work, Dress-Wenzel introduced the
notion of the valuation of the matroid. A valuation on a matroid M = (S,B) is a
function ω : B → R that satisfies the exchange property:

For any two bases B1, B2 and for any element s1 ∈ B1 − B2, there exists an element
s2 ∈ B2 −B1 for which

ω(B1) + ω(B2) ≤ ω(B1 − s1 + s2) + ω(B2 − s2 + s1) (1.3)

A matroid equipped with such a function is called a valuated matroid.
A valuation ω can be derived from a weight function η : S → R and α ∈ R by the

following relation:

ω(B) = α +
∑

η(u)|u ∈ B, B ∈ B (1.4)

Such a valuation is called a separable valuation.
We consider an extension of the independent assignment problem to its valuated variant.

More precisely, suppose that matroids M1 = (S1,B1) and M2 = (S2,B2) are given with
valuations ω1 : B1 → R and ω2 : B2 → R. Our goal is to find a matching M ⊆ A that
maximizes

Ω(M) ≡ ω(M) + ω1(d1(M) + ω2((d2(M))

subject to constraints (1.2).
This problem is called the valuated independent assignment problem.
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In this report we formulate two variants of optimality criteria for valuated independent
assignment problem by expanding them to the generally known optimality criteria to the
independent valuated assignment problem.

The first type of the optimality criteria has been shown in terms of potentials ( A. Frank,
An algorithm for submodular functions on graphs, Annals of Discrete Mathematics,16
(1982), pp. 97–120)[3] and the second type- in terms of negative cycles in an auxiliary
graph (S. Fujishige, A primal approach to the independent assignment problem, Journal
of the Operations Research Society of Japan, 20 (1977), pp. 1–15.).[4]

It is worth to mention that a valuated matroid is an abstract representation of polyno-
mial matrices (as it has been shown in the previous project work). On the other hand,
it is known that polynomial matrices play a vital role in system engineering. Hence, it is
natural to expect the effectiveness of valuated matroids in engineering problems.

In this regard, the considerable part of the applications of matroid theory is affiliated
totally or partially to the matroid intersection problem.

2 Formulation of the problem. The problem can be interpreted as follows:
Assume that we are given a bipartite graph G = (S1, S2 : A), valuated matroids M1 =

(S1,B1, ω1) and M2 = (S2,B2, ω2), and a weight function ω : A → R. We consider the
following optimization problem:

Find a matching M(⊆ A) that maximizes

Ω(M) ≡ ω(M) + ω1(d1(M) + ω2((d2(M))

subject to constraints (1.2).
It is obvious that we need two matroids of the same rank in order to be able to solve

this problem. For more convenience we assume that the function ω, is a function on 2S

and finite on a basis B (and is −∞ on every subset X of S which is not a basis, more
precisely, ω1(B) = ω2(B) = −∞ for X ⊆ S, where B /∈ B1 orB /∈ B2).

It is useful to mention the following optimization problems as well:
Now we suppose that we are given two valuated matroids M1 = (S,B1, ω1), M2 =

(S,B2, ω2) defined on a common ground set S and a weight function ω : S → R.
Intersection problem. Find a common base B ∈ B1 ∩ B2 that maximizes

ω(B) = ω1(B) + ω2(B)

Disjoint bases problem. Find disjoint bases B1 and B2 (B1∩B2 = ∅), where B1 ∈ B1

and B2 ∈ B2, that maximize ω1(B1) + ω2(B2)
Partition problem. Find a partition (B, S−B) of S such that it maximizes ω1(B)+

ω2(S −B).
The disjoint bases problem for more than two valuated matroids can also be interpreted

as a valuated matroid independent assignment problem.
In addition to these variants of the independent assignment assignmemt problem, there

is another optimization problem that can be formulated as follows:
For two matroids M1 and M2 defined on the same ground set S and two cost functions

ω1 and ω2 defined on 2S, we take into consideration the problem of finding bases B1

and B2 that minimize ω1(B1) + ω2(B2) subject to some cardinality constraint on their
intersection B1 ∩B2.
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More specifically, suppose that we are given two matroids M1 = (S,B1) and M2 =
(S,B2), ground set S, bases B1 and B2, two weight functions ω1 and ω2 and a nonnegative
integer k.

Lendl, Peis, Timmermans have proposed the following types of weighted matroid in-
tersection problem where the cardinality constraint is attached to the intersection of the
bases [5].

a) Minimize ω1(B1) + ω2(B2)
subject to Bi ∈ B⟩

|B1 ∩B2| = k
b) Minimize ω1(B1) + ω2(B2)

subject to Bi ∈ B⟩
|B1 ∩B2| ≥ k

c) Minimize ω1(B1) + ω2(B2)
subject to Bi ∈ B⟩

|B1 ∩B2| ≤ k

They showed that all of these 3 cases are strongly polynomial-time solvable problems:
they introduced a new primal-dual algorithm for the case with equality constraint and
reduced the other ones to a weighted matroid intersection problem.

Let us consider now some basic properties that were derived by Dress-Wenzel on the
maximization of a valuated matroid.

Lemma 2.1 Let B ∈ B. Then ω(B) ≥ ω(B
′
) for any B

′ ∈ B if and only if

ω(B, t, s) ≤ 0 for any (t, s) with t ∈ C(B, s) [1],

Remark: Suppose that M = (S,B, ω) is a valuated matroid of the rank r. For B ∈ B
and s ∈ S − B the unique circuit contained in B + s is denoted by C(B, s). For B ∈ B
and s ∈ S −B and t ∈ C(B, s) we have:

ω(B, t, s) = ω(B − t+ s)− ω(B).

The following lemma known as "Upper-bound lemma" gives a proof for Lemma 1.

Lemma 2.2 For B,B
′ ∈ B the following inequality holds:

ω(B
′
) ≤ ω(B) + ω(B,B

′
) [1]

Proof. For any t1 ∈ B −B
′ there exists s1 ∈ B

′ −B such that

ω(B) + ω(B
′ ≤ ω(B − t1 + s1) + ω(B

′
+ t1 + s1),

which, in turn, can be written as follows:

ω(B
′
) ≤ ω(B, t1, s1) + ω(B

′
2),

where B
′
2 = B

′
+ t1 − s1.

Then we get the following inequality:

ω(B
′
2) ≤ ω(B, t2, s2) + ω(B

′
3),

where B
′
3 = B

′
2 + t2 − s2 = B

′ − {t1, t2}+ {s1, s2}
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So we get

ω(B
′
) ≤ ω(B

′
3) +

∑2
i=1 ω(B, ti, si)

By repeating this procedure, we can get the general inequality:

ω(B
′
) ≤ ω(B) +

∑n
i=1 ω(B, ti, si) ≤ ω(B,B

′
), where n = |B −B

′|

2.1 Optimality criteria.

In this section we consider two optimality criteria for the valuated independent assign-
ment problem on a graph G = (S+, S−;A) with valuated matroids M1 = (S1,B1, ω1),
M2 = (S2,B2, ω2) and a weight function ω : A → R

The first theorem uses the notion of the so-called potential function.

Theorem 2.1.1 An independent assignment M in G is optimal for the valuated inde-
pendent assignment problem if and only if there exists a potential function p : S1 ∪ S2

such that [1]

(1) ω(a)− p(d1(a) + p(d2(a))

{
≤ 0 if(a ∈ A)
= 0 (a ∈ M)

(2) d1(M) is a maximum-weight base of M1 with respect to ω1[p1],

(3) d2(M) is a maximum-weight base of M2 with respect to ω2[p2],

where p1/p2 denotes the restriction of p to S1/S2 and ω1[p1]/ω[p2] denotes the similarity
transformation, that is:

ω1[p1](B1) = ω1(B1) +
∑

p(u)|u ∈ B1(B1 ⊆ S1),

ω2[p2](B2) = ω2(B2) +
∑

p(u)|u ∈ B2(B2 ⊆ S2)

The following remark would be useful:

Remark.
For p : S → R we can define such a function ω[p] : B → R ∪ {−∞} that :

ω[p](B) = ω(B) +
∑

{p(u)|u ∈ B

This operation is called a similarity transformation.

Now suppose that p is a potential function that satisfies the abovementioned conditions
(1)-(3) for some independent assignment M . Then this assignment is optimal if and only
if it satisfies (1)-(3).

This optimality condition can also be reformulated in a form of Frank’s weight splitting.
Here we are given matroids M1 = (S,B1, ω1)M2 = (S,B2, ω2), and the goal is to maximize
the following function:

ω(B) + ω1(B) + ω2(B) (*)

4



Theorem 2.1.2 A common base B of M1 = (S,B1, ω1) and M2 = (S,B2, ω2) maxi-
mizes (*) if and only if there exist functions ω1, ω2 : S → R such that:

(1) ω(s) + ω1(s) + ω2(s) (s ∈ S)

(2)B is a maximum-weight base ofM1 with respect to ω1[ω1],

(3)B is a maximum-weight base ofM2 with respect to ω2[ω2] [1]

In order to describe the second optimality criterion we should introduce an auxilary
graph G̃ = (S̃, Ã) equipped with the same independent assignment M . We have B1 =
d1(M), B2 = d2(M) and C1, C2 which denotes a fundamental circuit in M1 and M2,
respectively.

The vertex set S̃ of a graph G̃ is defined as S̃ = S1 ∪ S2, while the the set of edges Ã
is Ã = A0 ∪M0 ∪ A1 ∪ A2, where each component is defined as follows:

A0 = {a|a ∈ A} -copy of A,

M0 = {−→a |a ∈ M}- −→a is the reorientation of a

A1 = {(t, s)|t ∈ B1, s ∈ S1 −B1},

A2 = {(t, s)|t ∈ B2, s ∈ S2 −B2}.

Besides that, we need to introduce an arc length γ(a), which is defined as:

γ(a) =


−ω(a) if(a ∈ A0)
ω(−→a (a = (t, s) ∈ M0,

−→a = (s, t) ∈ M)
−ω1(B1, t, s) (a = (t, s) ∈ A1)
−ω2(B2, t, s) (a = (s, t) ∈ A2)

Remark. A directed cycle of negative length is called a negative cycle.

After givin the definitions above we can formulate the second optimality criterion.

Theorem 2.1.3 (Second optimality criterion). An independent assignment M of
a graph G is optimal for the independent assignment problem if and only if there doesn’t
exist a negative cycle in an auxilary graph G̃ with respect to the arc length γ(a). [1]

Remark. The second optimality criterion can be represented in the form of a Fenchel-

type duality between the matroid valuations and their conjugate functions.
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2.2 Matroid interection problem.

Let us recall the weighted matroid intersection problem.
We are given two matroids M1 = (S,B1) and M2 = (S,B2) defined on a common

ground set S,bases B1 and B2, two weight functions ω1 and ω2 and a nonnegative integer
k. We consider an optimization problem of finding a basis X1 ∈ B1 and a basis X2 ∈ B2

that minimize ω1(X1)+ω2(X2) subject to a lower bound constraint |X1 ∩X2| ≥ k, upper
bound constraint |X1 ∩X2| ≤ k, or the equality constraint |X1 ∩X2| = k imposed on the
intersection. First we consider the approach mentioned in [2].

It turns out that the problem with lower or upper bound constraint is computationally
equal to matroid intersection, while the problem with equality constraint can be considered
as a strictly more general problem.

If the equality constraint |X1 ∩ X2| = k is substituted either with the lower bound
constraint |X1∩X2| ≥ k or with the upper bound constraint |X1∩X2| ≤ k the optimization
problem is called P≥k or P≤k, respectively.

It is worth to mention that we are interested only on those integers k, which have the
range between 0 and K = min{r(M1), r(M2)}, where r is the rank of the matroid M (
cardinality of each basis in M).

As it was mentioned before Lendl et al. proposed the following solution:
They polynomially reduced both P≥k or P≤k to a weighted matroid intersection, which

can be solved in strongly-polynomial time. This, in turn, leads us to the question if the
problem with equality constraint can be solved in strongly-polynomial time.

Theorem 2.2.1 Both P≥k and P≤k can be reduced to a weighted matroid intersec-
tion.[2]

Let us describe the algorithm proposed by Lend et al:

First we need to solve the following problem without any constraint imposed on the
intersection:

min{ω1(X1) + ω2(X2)|X1 ∈ B1, X2 ∈ B2}

Suppose that (
∗
X1,

∗
X2) is an optimal solution of the problem. Then:

1) If |X1 ∩X2| = k, then we are done since (
∗
X1,

∗
X2) is optimal solution for P=k.

2) Else, if |X1 ∩X2| = k
′
< k, then the algorithm takes (

∗
X1,

∗
X2) for P=k′ as a starting

point and increases k
′ by one until it reaches k.

3) Else, if |X1 ∩X2| > k, then we consider the case P
=

∗
k

where
∗
k = r(M1)− k, costs ω1

and ω2 = − ∗
ω2 and the matroids M1 = (S,B1) M2 = (S,

∗
B2). Then an optimal solution

(X1, S \ X2) of problem P
=

∗
k

is compatible with the solution (X1, X2) of the original
problem.
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Theorem 2.2.2(Optimality condition)

For fixed λ ≥ 0, the pair (X1, X2) ∈ B1 × B2 is a minimizer of val(λ) if there exist
α, β ∈ R

|S|
+ such that:

(a) X1 is a min cost basis for ω1 − α and X2 is the min cost basis for ω2 − β,

(b) αs = 0 [2]

In order to understand the essence of λ, let us consider the following linear concave
function:

val(λ) = min(ω1(X1) + ω2(X2)-λ|X1 ∩X2|)
which is dependent on λ-parameter. Here val(λ)+ kλ is the Lagrangian relaxation of the
original problem with the equality constraint on the intersection.

The next question is how can we construct an auxilary graph G̃?

Let us consider a sequence (X1, X2, α, β, λ) that satisfies the optimality conditions in
Theorem 2.2.2. Then we can construct an auxilary digraph G̃ = G̃((X1, X2, α, β, λ) with
red-blue colored edges as follows:

1) 1 vertex stands for each element in S;

2) red edge (s, t) if s /∈ X1, X1 − t+ s ∈ B1, ω1(s)− αs = ω1(t)− αt;

3) blue edge (t, v) if s /∈ X2, X2 − t+ v ∈ B2, ω1(v)− βv = ω2(t)− βt

Here we should note that any red edge (s, t) stands for a move in B1 from X1 to
X1 ∪ {s} \ {t} ∈ B1.

Similarly, any blue edge (s, t) stands for a move in B2 from X2 to X2 ∪ {t} \ {s} ∈ B2.

Figure 1

The following lemma would be useful for defining an augmenting path in this digraph:
Lemma 2.2.1 Suppose that we are given a matroid M = (S,B with weight function
ω : S → R and X ∈ B. Let x1, x2, ..., xm ∈ X and y1, y2, ..., ym /∈ X satisfying the
following conditions:

a) X + yj − x ∈ B and ω(xj) = ω(yj) for j = 1, ...,m
b) X + yj − xi /∈ B and ω(xi) ω(yj) for i ≤ j, j ≤ 1, i ̸= j
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Then X \ {x1, x2, ..., xm} ∪ {y1, y2, ..., ym} ∈ B [8]
Definition 2.2.1. Any shortest red-blue alternating path connecting the vertex in

X2 \X1 with the vertex in X1 \X2 is called an augmenting path.

Lemma 2.2.2 Let us denote an augmenting in G̃ by P , then:
1) X1

′ = X1

⊕
P is a min cost basis with respect to ω1 − α,

2)X2
′ = X2

⊕
P is a min cost basis with respect to ω2 − β

3) |X1
′ ∩X2

′| = |X1 ∩X2|+ 1

Primal update.
Suppose that we are given a tuple (X1, X2, α, β, λ) that satisfies the optimality con-

ditions stated above. Then we update (X1, X2) to (X1
′
, X2

′
) by X1

′ = X1

⊕
P and

X2
′ = X2

⊕
P as long as an augmenting path allows us (i.e., there exists an augnmenting

path in the graph).

3 Algorithmic solution of the problem.
Dual update.
If there is no augmenting path in the graph and |X1 ∩ X2| < k, we denote by R the

set of vertices that are reachable from X2 \X1 on some red-blue alternating path. Here
we should take into account that X2 \ X1 ⊆ R and (X1 \ X2) ∩ R = ∅. Then we define
residual cost functions for each s ∈ S as follows:

ω1(s) = ω1(s)− αs and ω2(s) = ω2(s)− βs

It is worth to mention that by optimality of X1 and X2 with respect to ω1 and ω2 we
have ω1(s) ≥ ω1(t) whenever X1− t+s ∈ B1, and ω2(s) ≥ ω2(t) whenever X2− t+s ∈ B2.

We define a new notion of "step length" δ > 0, which is computed as follows:

δ1 = min{ω1(s)− ω1(t)|s ∈ R \X1, t ∈ X1 \R,X1 − t+ s ∈ B1}
δ2 = min{ω2(v)− ω2(t)|v /∈ X2 ∪R, t ∈ X2 ∩R,X1 − v + t ∈ B2}

In some cases it is possible that sets over which minimum is calculated are empty sets.
In this case we suppose that this minimum is equal to ∞. In the particular case when
M1 = M2 this situation can not occur.

Since neither a red, nor a blue arc goes from R to S \ R, we know that bot δ1 and δ2
are strictly positive, i.e., δ = min{δ1, δ2} > 0. Now we have:

α
′
s =

{
αs + δ if(s ∈ R)

αs otherwise and

β
′
s =

{
βs if(s ∈ R)

βs + δ otherwise
Lemma 3.1 (X1, X2, α

′
, β

′
) satisfies the optimality condition when λ

′
= λ+ δ

Lemma 3.2 If (X1, X2, α, β, λ) satisfies the optimality conditions and the "step length"
δ < ∞, then primal update can be performed after at most |S| iterations of dual update.
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Summing up the abovementioned facts, we get the following algorithm named primal-
dual algorithm proposed by Lendl et al.

Input: M1 = (S,B1), M2 = (S,B2), ω1, ω2 : S → R, k ∈ N
Output: Optimal solution (X1, X2) of the problem P=k

Step1. Calculate the optimal solution (X1, X2) of

min{ω1(X1) + ω2(X2)|X1 ∈ B1, X2 ∈ B2}.

Step2. If |X1 ∩X2| = k, return (X1, X2) as an optimal solution.

Step3. Else |X1∩X2| > k, run algorithm on M1,
∗
M2 , ω1 and ω2 = − ∗

ω2,
∗
k = r(M1)−k.

Step4. Else define λ := 0, α := 0, β := 0.
Step5. While |X1 ∩X2| < k, do:

1)Construct an auxilary graph based on a tuple (X1, X2, α, β, λ)
2) If there is an augmenting path in this graph, then update primal :

X1
′ = X1

⊕
P , X2

′ = X2

⊕
P

3) Else compute step length δ as it was calculated above.
If δ = ∞, then the algorithms returns an infeasible solution.
Else set λ := λ+ δ and update dual:

α
′
s =

{
αs + δ if the vertex s is reachable

αs otherwise and

β
′
s =

{
βs if the vertex s is reachable

βs + δ otherwise
Iterate the process with (X1, X2, λ, α, β)

Step6. Return (X1, X2).

It is worth to mention the following statement:
The primal-dual algorithm solves (P=k) using at most k × |S| primal or dual aug-

mentations. Furthermore, the sequence of optimal solutions (Xk, Yk) for all (P=k) with
k = 0, 1, ..., K can be computed for |S|2 primal or dual augmentations.

There is another solution, which is much simpler in comparison to the algorithm devel-
oped by S. Lendl, B. Peis, V. Timmermans. It was proposed by Laszlo Vegh:

Consider first the following auxiliary problem. For matroids M1 and M2 on S, we
asssume that they admit bases B1 and B2 for which |B1∪B2| ⊆ k. Find a basis B1 of M1

and a basis B2 of M2 for which |B1 ∪B2| ≤ k and ω̃1(B1)+ ω̃2(B2) is as small as possible.
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In order to solve this problem, let S1 and S2 be two disjoint copies of S. Put M1

equipped with ω1 on S1 and put M2 equipped with ω2 on S2. Then suppose that M is the
direct sum of these two matroids. Let M

′ be a matroid on S1 ∪ S2 in which a subset is
independent if it includes at most k pairs where a pair consists of the copies s1 ∈ S1 and
s2 ∈ S2 associated with an element s of S. This is indeed a matroid and the auxiliary
problem is nothing else but finding a cheapest common independent set of r1+r2 elements
in these two matroids M and M

′ . Returning to the original problem, with the help of the
auxiliary problem, we find bases B1 and B2 for which |B1 ∩B2| ≤ k and ω̃1(B1) + ω̃2(B2)
is minimum. If |B1∩B2| = k, then we are done. So we may assume that (1) |B1∩B2| < k.
We claim that B1 is a minimum ω1-cost basis of M1. Indeed, if this is not the case, then,
by the standard characterization of cheapest bases, there are elements t ∈ B1, s ∈ S-B1

for which ω1(s) < ω1(t) and B1a := B1− t+s is a basis of M1. But in this case (1) implies
that |B1 ∩ B2| ≤ k, contradicting the minimality of ω̃1(B1) + ω̃2(B2). Similarly, we see
that B2 is a minimum ω2-cost basis of M2. Symmetrically, we can find bases B

′
1 and B

′
2

for which |B′
1 ∩B

′
2| ≥ k and ω1(B

′
1) + ω2(B

′
2) minimum. If |B′

1 ∩B
′
2| = k, we are done.

So we may assume that (2)
|B′

1 ∩ B
′
2| > k. In this case it is also true that B

′
1 is a minimum ω1-cost basis of M1

and that B′
2 is a minimum ω2-cost basis of M2. It is known that the minimum cost bases

of a matroid form a matroid. This implies that, starting from B1, we can arrive at B
′
1

by a sequence of element-changes so that each intermediate basis of M1 is a minimum
ω1-cost basis of M1. After this, starting from B2, we can arrive at B

′
2 by a sequence of

element-changes so that each intermediate
basis of M2 is a minimum ω2-cost basis of M2. But then there must be an intermediate

pair of bases for which the intersection of the two bases has exactly k elements.
As it was mentioned above, this solutuion is much more simple than LPT algorithm.

The algorithm of Lendl et al. requires at most |S| updates of potential functions, therefore
one update of a solution takes O(|S|2r) time, since each update of potential functions
requires O(|S|r) time.
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