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Computer vision tasks

Input images: {X:}N, c RFP*Wxch

e Classification
— Annotation: L; € {1,2,...,C} =[C]
— C: number of classes
e Object detection
— Annotation: B; € R* x [C]
— 4 real numbers which define the bounding box + class label
e Semantic segmentation
— Annotation: M; € {0,1}*Wx¢
— Pixel-level class labels
e Instance segmentation
— Annotation: /; € {0,1,..., k}H*Wxc
— k is the maximum number of instances
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Semantic segmentation

Setup:

N HXx W x Ch
iz C R

e Image dataset of N element: {Xi} and its annotations

(masks): {Mi}l; C {0, 1}1*Wx¢

e We want a model f s.t. f(X;) ~ M;.

e One-class case: C =1 (multi-class case can be viewed as C times the
one-class case)

e Suppose, that the output of our model is f(X;) = P; € R and
P/ € [0,1].

e Output: probability of the pixel belonging to the class (achieved by
sigmoid layer at the end of the model)



Metrics and loss functions

e Cross-entropy loss function for segmentation:

1

BCELoss(P, M) = R,

> aMilog P + (1 — M;)log(1 — P)
i=(h,w)
With o we can address class imbalance.
e Focal-loss:

BinaryFocallLoss(P, M) = ﬁ a(l — P;)" My, log Pi+
i=(h,w)

+Pi’y(1 — M,') |Og(1 — P,').

Can magnify the signal of hardly classifiable pixels in the the loss.



Metrics and loss functions

e Classification metrics using the elements of the confusion matrix after
thresholding the output of the model: Jaccard-score, Dice-score. This
works as a metric for segmentation, but not as a loss-function

e Generalization of the elements of the confusion matrix:
TP = MoP, FP = (J—M)oP, FN = Mo(J—P), TN = (J—M)o(J—P),

J € R"*W is the all-one matrix, a o is the Hadamard product.

e Tversky loss:
TP+ ¢

TP+ aFN + BFP + ¢

The special cases of the Tversky loss with the right « and ( are i.e.

TverskylLoss =

Dice-loss and loU-loss.



Segmentation models

Mask R-CNN:
e Based on R-CNN, Fast R-CNN and Faster R-CNN models
e Region proposal block (increasing significance of conv. layers)
e Mask R-CNN: Faster R-CNN + Rol Align + Mask classifier
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Segmentation models

FCN

e Standard classification models (VGG, ResNet):
— Some convolutional blocks + dense layers
— In the i-th block the image has shape H; x W; x Ch;, Ch; is mon.
increasing, H; and W, mon. decreasing

e For segmentation: Keep H; and W, fix and drop dense layers

e FCN:
— encoder with decreasing spatial dimensions
— decoder with increasing spatial dimensions (transpose
convolutions/upsampling)
e To keep spatial information we add the outputs of some blocks in the
encoder to the corresponding phase of the decoder



Segmentation models

FCN-8 model
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Segmentation models

U-Net

e Encoder-decoder structure of convolutional blocks
e Losing precise spatial information during the encoder, but gaining higher
level representation about the content
e Skip-connections:
— Maintain spatial information in decoder from the encoder branch.
— Concatenation (in channel dimension) instead of addition
e Especially popular in medical image segmentation
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Segmentation models

Attention U-Net

e Attention: selectively concentrating on some things, while ignoring others

e Attention gates in U-Net:
— Attention mechanism
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e Tested U-Net and Attention U-Net with BCE and Focal loss

e Electron microscopy images from the hippocampus

e More than 90% accuracy with each method (easy dataset)
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Segmentation models

Other U-Net variants
e Changing convolutional blocks: Residual U-Net, R2-UNet
e Combining modifications: Attention Res-UNet
Transformers

e First in NLP, great success with multihead self-attention blocks
e Vistion Transformer (ViT): successful adaptation for image classification

e New results on transformer architectures for segmentation: DeTr, SeTr,
Trans-UNet
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Application

e H&E stained histopatology . ..

e 4096x4096 images divided
into 512x512 patches

images of lung tissue

e Four  different  cancer
type (ADC, SqCC, SCLC, :
SKMU), but only enough
data for lung squamous
cell carcinoma (SqCC) so
far

e First experiments: Stan-
dard U-Net and weighted ¥4
BCE for finding the optimal "
balancing method
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Further plans

e Since changing the « factor in the loss function didn’t imporove the
performance enough, we implement other class balancing methods like
under- and oversampling

e Continuing the theoretical and experimental research in form of a Master's
thesis

e Planning to try more advanced models (especially transformer based
methods) and loss functions

e Possibly find out new techniques for datasets like this, and test them on
benchmark datasets as well
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Thank you for the attention!
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