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1 Summary

The signatures of a rough path contain information about its behaviour. In this

project we wish to give a brief theoretical overview of this concept and also propose

an application. In the next part, we review the definition of the signature of a path

and some important properties.

The third section will contain information about the application, and connection of

Taylor’s polynomial to signature. Theorem 3.2 tells us that computing the signa-

tures of a path gives us a Taylor-polynomial for rough paths, where we substitute

the derivatives with the appropriate signatures. As an example to demonstrate the

use of signatures, in this project we wish to utilise the information encoded in the

signatures of a rough path in order to make statistical predictions about the future

behaviour of the time series. The time series we collected is financial information,

stock prices, and in that section, we present a way of making predictions using

signatures. Stock prices are well known to be volatile, that is the reason why rough

path analysis is needed. We take advantage of the fact that these iterated inte-

grals can easily calculated with already implemented ”iisignature” package (see

[6] for more information). The results of the analysis show that while clearly there

is no chance to predict the future exactly, sometimes the method can give us nice

approximate results.

2 Introduction to signatures

Before anything else, we should recall the definition of our main concept of the

project: signature of a path.

Definition 2.1. Let us assume Xt : [a, b] 7→ Rm, then the signature of the path Xt is



an infinite series of the iterated integrals

S(X)a,b = (1, S(X)1
a,b, S(X)2

a,b . . . , S(X)m
a,b, S(X)11

a,b, . . .).

S(X)i
a,t =

∫
a<s<b dXi

s = Xi
t − Xi

0

S(X)i,j
a,t =

∫
a<s<b S(X)i

a,s dX j
s =

∫
a<r<s<t dXi

rdX j
s(1)

Now, we can move on to the properties which will be useful for computational,

statistical problems, and analysing time series.

2.1 Reparametrization

The first property states that, the signature S(X)a,b remains invariant under time

reparametrizations of X.

Proof. We have two paths X, Y : [a, b] → R, we denote the reparametrization by

ϕ : [a, b] → [a, b]. We assign new paths : Xϕ = X̄, Yϕ = Ȳ. If we differentiate X̄, we

get : (X̄t)′ = (Xϕ(t))
′ = (Xϕ(t))

′ ∗ (ϕ(t))′. It means∫ b

a
Ȳt dXt =

∫ b

a
Ȳt Xϕ(t))

′ ∗ ϕ(t)′ (2)

by substituting u = ϕ(t)∫ b

a
Ȳt dXt =

∫ b

a
Ȳt Xϕ(t))

′ ∗ ϕ(t)′ =
∫ b

a
Ȳu dXu (3)

2.2 Shuffle product

The next fundamental property is useful when we deal with higher dimensions,

since we it allows us to describe the product of two signature terms as a summation

using other terms. Additionally, the signature satisfies the shuffle product formula

for every path X, this was discovered by Chen in 1957.



Definition 2.2. A (k, m) shuffle is a permutation of {1, . . . , k +m} if σ−1(1) < · · · <

σ−1(k) and σ−1(k + 1) < · · · < σ−1(k + m). Notation of collection of all (k, m)

shuffles : Shuffle(k, m)

Given two multi-indexes, I = {i1, . . . , ik} and J = {j1, . . . , jm}, (i1, . . . , ik, j1, . . . , jm ∈

{1, . . . , d}), the shuffle product of I and J, which we denote by I� J = {(rσ(1), . . . , rσ(k+m))|

σ ∈Shuffle(k, m)}.

Theorem 2.1. We have a path X : [a, b] 7→ Rd, and I = (i1, . . . , ik) and J =

(j1, . . . , jm), (i1, . . . , ik, j1, . . . , jm ∈ {1, . . . , d}), then

SI(X)SJ(X) = ∑
K∈I�J

SK(X) (4)

Proof.

SI(X)SJ(X) =
∫
· · ·

∫
0<u1<···<uk<1

dXi1
u1 . . . dXik

uk

∫
· · ·

∫
0<t1<···<tm<1

dX j1
t1

. . . dX jm
tm

=

= ∑
σ∈Shu f f les(k,m)

∫
· · ·

∫
0<v1<···<vk+m<1

dX
rσ(1)
v1 . . . dX

rσ(k+m)

vk+m == ∑
K∈I�J

SK(X)

2.3 Chen’s identity

Before continuing to define the Chen’s identity, we should know what is the formal

power series and a concatenation of two paths.

Definition 2.3. We call the vector space of series a non-commuting formal power

series if, for all el, when l ∈ [1, d] indeterminates, it has a form of

∞

∑
k=0

∑
i1,...,ik∈{1,...,d}

λi1,...,ik ei1,...,ik , λ ∈ R. (5)

Note that the space of formal power series is an algebra, if it has the usual scalar

multiplication, addition and the tensor product.



But how is it related to signatures and paths, one may ask. The answer is simple, we

can express our signatures with the help of the previous definition, which becomes

clear if we observe the multi indices.

S(X)a,b =
∞

∑
k=0

∑
i1,...,ik∈{1,...,d}

S(X)i1,...,ik
a,b ei1,...,ik . (6)

Definition 2.4. Let X : [a, b] 7→ Rd,Y : [b, c] 7→ Rd, then the concatenation of X and

Y is a path from [a, c] 7→ Rd:

(X ∗Y)t=


Xt, if t ∈ [a, b]

Xb + (Yt −Yb), if t ∈ [b, c].

Theorem 2.2 (Chen’s identity). As usual, let us have two paths X : [a, b] 7→ Rd,Y :

[b, c] 7→ Rd, then

S(X ∗Y)a,c = S(X)a,b ⊗ S(Y)b,c. (7)

Proof. To start proving, we should remember what is a signature and what are the

coordinate paths:

S(X) = (1, X, X2, . . . ) (8)

Xn =
∫
· · ·

∫
0<u1<···<un<1

dXu1 ⊗ · · · ⊗ dXun . (9)

Now, lets assign a new path Z = X ∗Y, it means

Zn =
∫
· · ·

∫
s<u1<···<un<u

dZu1 ⊗ · · · ⊗ dZun =

=
n

∑
k=0

∫
· · ·

∫
s<u1<···<uk<t<uk+1<un<u

dZu1 ⊗ · · · ⊗ dZun =

=
n

∑
k=0

∫
· · ·

∫
s<u1<···<uk<t

dXu1 ⊗ · · · ⊗ dXuk

∫
· · ·

∫
t<u1+k<···<uk<u

dXuk+1 ⊗ · · · ⊗ dXun =

=
n

∑
k=0

Xk ⊗Yn−k

(10)



2.4 Uniqueness and Time reversal

Definition 2.5. A path X : [0, 1] 7→ Rd is tree-like, if ∃ f : [0, 1] 7→ [0, ∞) : f (0) =

f (1) = 0 and ∀s, t ∈ [0, 1], s ≤ t :

‖Xs − Xt‖ ≤ f (s) + f (t)− 2 inf
u∈[s,t]

f (u). (11)

Theorem 2.3. Assume X, Y : [a, b] 7→ Rd, then

∀t ∈ [a, b] : Xt = Yt =⇒ ∀k ∈ {1, . . . , d} : Sk(X) = Sk(Y). (12)

Theorem 2.4 (Time reversed signature). If we have a path X : [a, b] 7→ Rd, then the

following is true:

S(X)a,b ⊗ S(
←−
X )a,b = 1. (13)

Here
←−
X is the time reversal, meaning

←−
X t = Xa+b−t, ∀t ∈ [a, b].

Definition 2.6. Two paths X and Y are called tree-like equivalent if X*
←−
Y is tree-like

(where
←−
Y t = Y1t).

Now, since we defined a tree-like path we can state the uniqueness theorem.

Theorem 2.5. Assume X is a continuous path with bounded variation, then S(X) =

1 ⇐⇒ X is tree-like, additionally S(X) is unique up to a tree-like equivalence.

Which means that, the equivalence in Definition 2.5 is the same as Theorem 2.3.

After all these properties, we can conclude, the path cannot be simply reconstructed

from its signature in the exact speed it travels, because of the time invariance prop-

erty. However, it is not an awful thing, since we are unable to reconstruct a Geo-

metric Brownian motion from only its volatility and drift. Furthermore, when X

does not cross itself, meaning it is a tree-like path, we can recreate the geometry of

the traverse of our path.



3 Application

After reviewing all fundamental information, we have now a grasp on how signa-

ture works in theory, but how do we use all these in real life?

The most known theorem for approximating functions is Taylor’s theorem (Theo-

rem 3.1), and signature describes the same thing, but for rough paths we do not

have partial derivatives.

Theorem 3.1. f (x, y) ≈ f (a, b) + (x− a) fx(a, b) + (y− b) fy(a, b)

Remark. While it is true if we take higher derivatives we get a better approximation

even in the signature method (going with higher multi-indices), for now we will

only go until second derivative and multi-indices such as S1, S2, S1,1, S1,2, S2,1, S2,2.

The advantage of using the signature method is that any multivariate distribution

of data could be represented as a path in a high-dimensional space Rd.

The process of using signature would be the following:

1. We have a data stream

2. Embed it to Rd

3. Compute the iterated integrals up to a level of truncation

4. Use the resulting set of features for analysing the data/forecasting

In this stage of the project, the data stream is a Geometric Brownian motion. Un-

fortunately, Theorem 3.2 from [5] states that the Brownian motion is nowhere dif-

ferentiable, almost surely. Therefore, we have :

Theorem 3.2. f (X) = c0 + c1S(X)1
a,b + c2S(X)2

a,b + c1,1S(X)1,1
a,b . . . .

We may have a list of data, which we need to reconstruct as a path. They are many

ways to do so, for example, piece-wise linear interpolation, rectilinear interpolation

or lead-lag transformation, which we will see in the next example.



Example 3.1. Let us say {X1} = {1, 2, 5, 6}, {X2} = {1, 6, 5, 3}, then the em-

bedding with lead-lag would look like this: X1,lead = {1, 2, 2, 5, 5, 6, 6} ,X1,lag =

{1, 1, 2, 2, 5, 5, 6}. Also, after using the definitions and calculating integrals we get

S(X) = {5, 2, 12.5,−9, 19, 2}.

S1(X) = X1
3 − X1

0 = 6− 1 = 5, S2(X) = X2
3 − X2

0 = 3− 1 = 2,

S1,1 = (X1
3 − X1

0)
2/2 = 25/2, S2,2 = (X2

3 − X2
0)

2/2 = 4/2,

S1,2 =
∫ 3

0

∫ 3
0 dX1

t1
dX2

t2
=

I have computed the slope for X1 is (1, 3, 2), for X2 it is (5,−1,−2).

=
∫ 1

0

[∫ t2
0 dX1

t1

]
5dt2 +

∫ 2
1

[∫ t2
0 dX1

t1

]
(−1)dt2 +

∫ 3
2

[∫ t2
0 dX1

t1

]
(−2)dt2=

=
∫ 1

0

[
Xt2 − X0

]
5dt2 +

∫ 2
1

[
Xt2 − X0

]
(−1)dt2 +

∫ 3
2

[
Xt2 − X0

]
(−2)dt2

=
∫ 1

0 [t2 + 1− 1] 5dt2 +
∫ 2

1 [2t2 + 1− 1] (−1)dt2 +
∫ 3

2 [2t2 − 1] (−2)dt2

= −9

One difficult thing we have encountered while trying to calculate the signature

would be the integrals especially without calculators or computers. Hence, we

installed ”iiisignature” with python which helps us to efficiently and quickly get

our results.

1 pip install iisignature

2 import iisignature as isig

3 import numpy as np

4 data= ([1,1], [2,6], [5,5], [6,3])

5 isig.sig(data, 2, 1)

6 output: (array([5., 2.]), array([12.5, -9. , 19. , 2. ]))

Now, let us test it with real life financial data. First, we imported the Google stock

data (precisely the weekly data from 2020.10.1 until 2021.9.30) from Yahoo Finance.

From now on we will use the adjusting closing price, which takes into account



some factors that may affect the price after the market closes. We can have a grasp

on how our data looks like from Table 1 and Figure 1.

0 1458.420044 27 2285.879883 47 2891.0100100

1 1515.219971 28 2297.760010 48 2895.500000

2 1573.010010 29 2315.300049 49 2838.419922

3 1641.000000 30 2410.120117 50 2829.270020

4 1621.010010 31 2398.689941 51 2852.659912

5 1761.750000 32 2316.159912 52 2665.310059

. . . . . . . . . . . . . . .

Table 1: The Adjusting Closed price

Figure 1: The plot of the Adjusting Closed price

As we have mentioned before and saw in Example 3.1, we will use lead-lag trans-

formation to construct a two dimensional path from our discrete one dimensional

data.



Figure 2: The Lead-Lag

Our aim is to predict the future stock prices using our first 30 weeks of date. For

this, firstly, we would like to write a function that will provides us with a dataframe

that contains means of 2 consecutive prices, for the rolling window of size 30. Not

to forget, we also should consider the time of the given data while we do all these.

Since we concatenated the lead and lag to get our stream, we will calculate the

signature (level 2) of the data and stored them in a table.

To make predictions about the future signatures of the time series, we used the past

information (i.e. the signatures the program computed for the rolling windows of

the past) and fit lasso linear regression. The parameter alpha of the regression was

optimised with GridSearchCV.

Last, we use the Train-Test Split Procedure (from sklearn.model), where we split

our signature table and next mean dataframe into a train and test, with the objective

of predicting the next future prices. The result can be seen below in Figure 3.



Figure 3: Prediction of Google

Unfortunately, it is not a hundred percent accurate, however the difference varies

between 0− 250 dollars, which can be considered a lot, but compared to the maxi-

mum price of a stock it is not extremely much, additionally, we can see the method

predicts the down slope in our data.

Now, let us see another data set, namely Samsung stock prices in the same time,

using our method.

Figure 4: Prediction of Samsung

In conclusion, we can not predict the target every time with a nice accuracy using

signature. There may be a few nice forecasts, but, since data such as stock prices

can be swayed by a lot of factors, it is still not likely the perfect method for all the

time, if there is one.
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