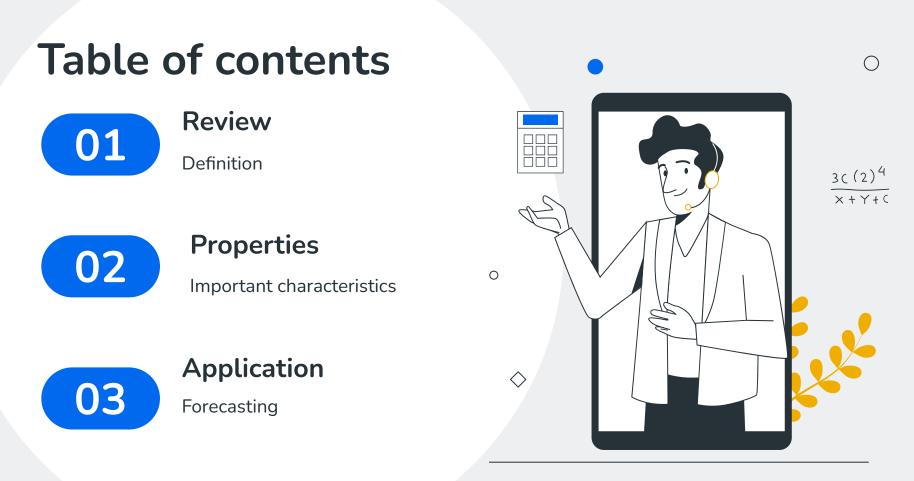


BAT-ERDENE EGSHIGLEN

SUPERVISOR : TIKOSI KINGA

²⁰²¹



Review

 \diamond

10+17

3.45

 \bigcirc

Ο

0

 $\frac{\sqrt{2.8}}{3+2^+}$

DEFINITION: We have a path X_t :[a,b] $\rightarrow \mathbb{R}^m$, then the signature of the path is an infinite series of iterated integrals:

$$S(X)_{ab} = (1, S(X)_{ab}^{1}, S(X)_{ab}^{2}, ...)$$

0

Review

10+17

 \bigcirc

0

 \diamond

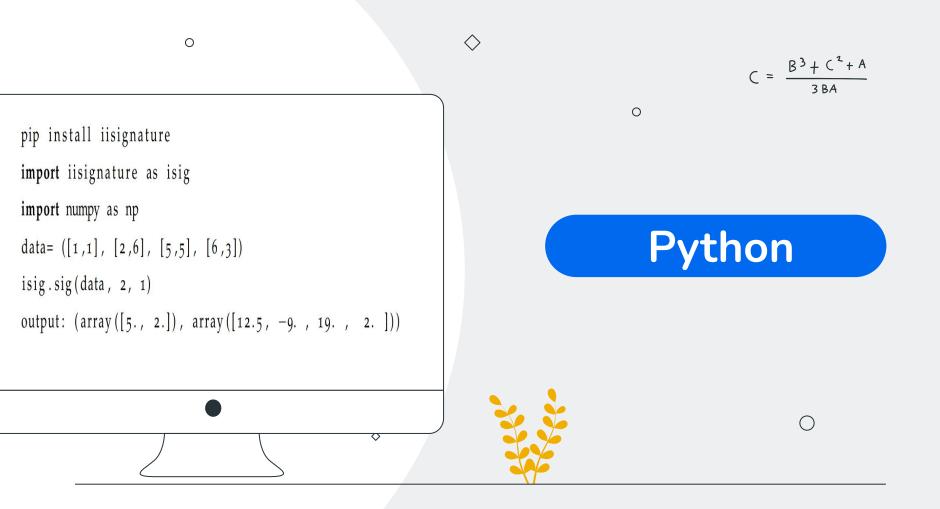
$$S(X)_{a,t}^{i} = \int_{a < s < b} dX_{s}^{i} = X_{t}^{i} - X_{0}^{i}$$

$$\frac{\sqrt{2.8}}{3+2^+}$$

0

$$S(X)_{a,t}^{i,j} = \int_{a < s < b} S(X)_{a,s}^i \, dX_s^j = \int_{a < r < s < t} \, dX_r^i dX_s^j$$

0



• Concatenation

Definition 2.3. Let $X : [a, b] \mapsto \mathbb{R}^d$, $Y : [b, c] \mapsto \mathbb{R}^d$, then the concatenation of X and Y is a path from $[a, c] \mapsto \mathbb{R}^d$: $(X * Y)_t = \begin{cases} X_t, & \text{if } t \in [a, b] \\ X_b + (Y_t - Y_b), & \text{if } t \in [b, c]. \end{cases}$

 \diamond

 \Diamond

0

 \bigcirc

A 3B O

Theorem 2.2 (Chen's identity). As usual, let us have two paths $X : [a, b] \mapsto \mathbb{R}^d, Y : [b, c] \mapsto \mathbb{R}^d$, then

 \diamond

 \cap

$$S(X * Y)_{a,c} = S(X)_{a,b} \otimes S(Y)_{b,c}.$$

(9)

Theorem

0

 \bigcirc

Definition 2.4. A path $X : [0,1] \mapsto \mathbb{R}^d$ is tree-like, if $\exists f : [0,1] \mapsto [0,\infty) : f(0) = f(1) = 0$ and $\forall s, t \in [0,1], s \leq t$:

$$||X_s - X_t|| \le f(s) + f(t) - 2\inf_{u \in [s,t]} f(u).$$
(13)

 \bigcirc

Ο

 \bigcirc

Theorem 2.3. Assume $X, Y : [a, b] \mapsto \mathbb{R}^d$, then

$$\forall t \in [a,b] : X_t = Y_t \implies \forall k \in \{1,\ldots,d\} : S^k(X) = S^k(Y).$$

 \bigcirc

Ο

Theorem 2.3.2 (Uniqueness). Let X be a continuous path with bounded variation. Then,

• S(X) = 1 if and only if X is tree-like.

 \Diamond

0

 \bigcirc

 \diamond

• The signature S(X) is unique up to tree-like equivalence.

 $\frac{\sqrt{2.8}}{3+2^+}$

 \Diamond

Application

How do we use the signature in real life?

Ο

 $\frac{\sqrt{2.8}}{3+2^+}$

 \Diamond

I would like to approximate a function, what should I do?

Taylor's theorem

But what if we do not have a differentiable function?

0

 $4+6+(2\sqrt{3})$

Approximation

$$f(X) = c_0 + c_1 S(X)_{a,b}^1 + c_2 S(X)_{a,b}^2 + c_{1,1} S(X)_{a,b}^{1,1} \dots$$

 \diamond

 \bigcirc

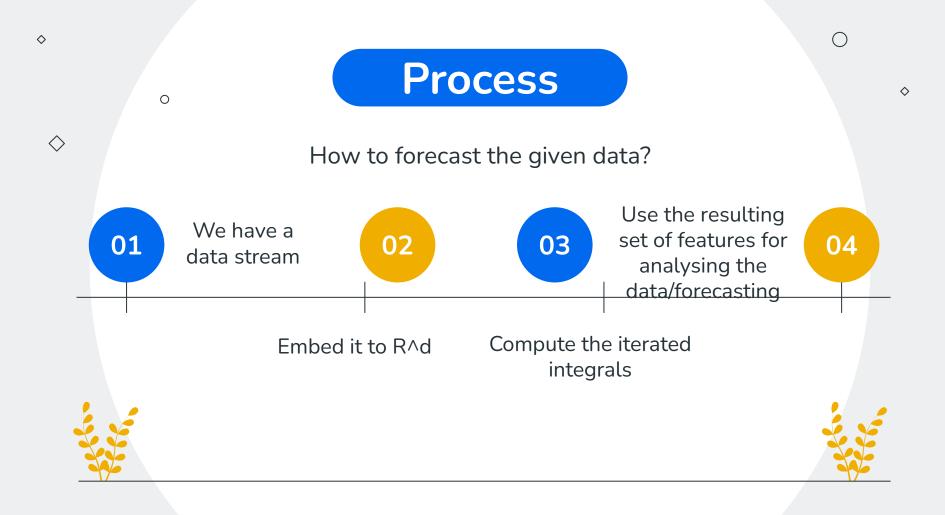
 $\frac{\sqrt{2.8}}{3+2^+}$

0

10+17

 \Diamond

 \bigcirc



STEP 1. Import data

 Adj Close 2800 2600 2400 2200 2000 1800 1600 Oct Nov Dec Feb Mar May Jan 2021 Apr Aug Sep Jun Jul Date

 \diamond

 \bigcirc

 \diamond

10+17

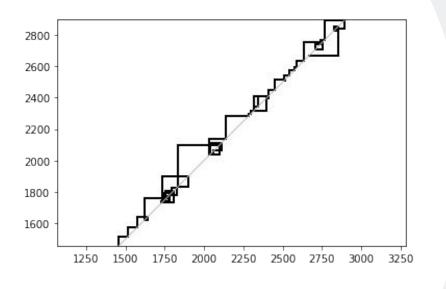
 \Diamond

0

 \bigcirc

 $\frac{\sqrt{2.8}}{3+2^+}$

STEP 2. Embed data to 2D



 $C = \frac{B^3 + C^2 + A}{3BA}$

Our stream would be the concatenated lead-lag data.

0

Next we will calculate the level 2 signature of the stream.

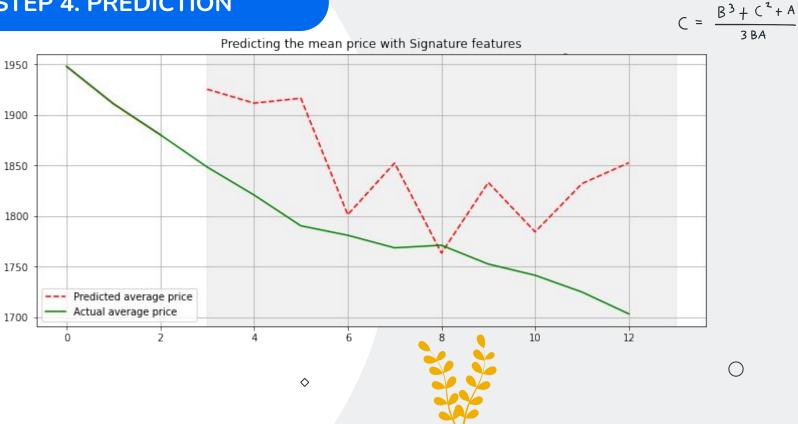
 \diamond

 \Diamond

STEP 3. Compute signature

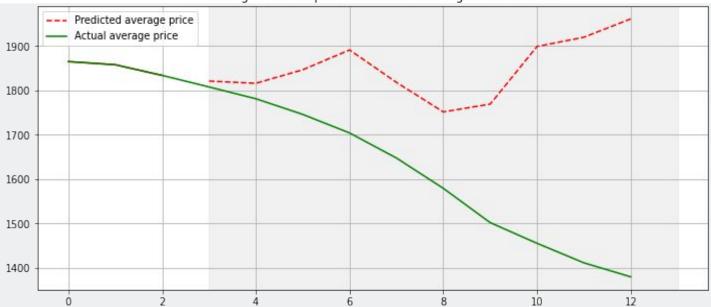
	0	1	2	3	4	5	6
0	0.707317	-603.390137	-603.390137	0.250149	-327.558707	-334.917123	-99.229439
1	0.707317	-744.119873	-744.119873	0.250149	-278.150453	-287.225086	-248.178237
2	0.707317	-792.410035	-792.410035	0.250149	-310.112810	-319.776347	-250.372337
3	0.707317	-737.280029	-737.280029	0.250149	-245.991776	-254.982996	-275.498976
4	0.707317	-791.389893	-791.389893	0.250149	-225.248577	-234.899673	-334.515006

STEP 4. PREDICTION



 \Diamond

STEP 4. PREDICTION



Predicting the mean price of SMSN.IL with Signature features

CONCLUSION

While we can not predict the prices accurately every time, sometimes we get a nice approximation.

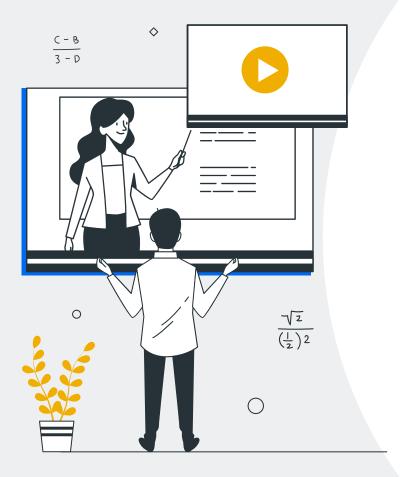
Maybe calculating signature up to different levels would give us nicer approximation. But we did not do this, because of computational difficulties.

 \diamond

 \diamond

 \bigcirc

 \cap



Thank you for your attention!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution

