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Abstract

The purpose of this work is to introduce two
approaches to solve boundary value problem.
We use mesh-free methods which are based
on the relation between fundamental solutions
and can be implemented by neural networks.
In the first approach, we construct a direct ap-
proximation of analytical solution as a linear
combination of fundamental solutions based
at outer points. In the second approach, we
try to find a mapping between fundamen-
tal solutions at boundary points and interior
points. The first one is memory-efficient and
the learning data in the second one is inde-
pendent of the boundary conditions. Both of
these methods work efficiently giving small er-
rors in a variety of domain’s shape and in case
of different boundary conditions. Moreover,
the different neural networks can lead to the
same accuracy.

1 Introduction
In the last decade, the development of the practice

and software tools for neural networks made it as one
of the most powerful tools in applied mathematics. In
this way, it is a natural attempt, to apply this tool
somehow for the solution of the major problems in nu-
merical analysis. An important class of these problems
is the numerical solution of PDE’s. Accordingly, some
related works were published in the last years. The
main research direction was to mimic the geometry of
the domain and the corresponding finite element or
finite difference discretization, called the physics in-
formed neural networks. At the level of the linear
solvers, their motivation was the multigrid method
and related convolutional neural networks were con-
structed. This is extended to a number of PDE’s and
a whole library of neural networks was prepared for
computing [13].

At the same time, some theories and a number

of promising numerical experiments are available for
mesh-less methods, where one can bypass the construc-
tion of a computational grid. The main benefit of using
a related approach, the boundary element methods is
that only the boundary has to be discretized. In the
conventional finite difference and finite element meth-
ods, the domain is also discretized. At the same time,
when solving partial differential equations with inho-
mogeneous conditions, the boundary element methods
are tend to be less efficient because integral reformula-
tions generally involve a domain integral. The evalua-
tion of this term may consume the majority of the com-
putation time. For further details and well-developed
convergence analysis, we refer to [16].

Similarly to boundary element methods, the method
of fundamental solutions [3] can be used for both ho-
mogeneous and inhomogeneous elliptic partial differ-
ential. This approach became popular because of its
simplicity and rapid convergence. This was verified
only in a simple case, for a disk domain in [17] and
extended to other similar domains in [8]. At the same
time, for a general domain Ω a convergence rate in
Sobolev norms has still not been derived.

We start from this approach and make it even more
efficient by applying the armoury of machine learning.
In particular, we use neural networks with different
structures for linear elliptic problems. To be more spe-
cific, we consider the numerical solution of well-posed
boundary value problems for the Laplace’s equation

∆u = 0 in Ω, (1)

and for Helmholtz equations

∆u± k2u = 0 in Ω, (2)

where Ω is a bounded simply connected set with
boundary ∂Ω.

The paper is divided into five sections. In section
2, in order to solve the Laplace equation, we intro-
duce the first approach mainly based on the method
of fundamental solution for solving Laplace’s equation
with Dirichlet, Neumann or mixed type boundary con-
ditions. And we modify the learning data of neural
networks by approximating fundamental solutions at
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interior points by a linear combination of fundamen-
tal solutions on boundary points. In section 3, the
Helmholtz equations are investigated by both above
method. Section 4 lists meaningful results about the
convergence analysis for both Laplace and Helmholtz
equation, analytical and non-analytical solution. The
accuracy, the efficiency, the optimal way to tune pa-
rameters of both approaches can be seen in section 5
through different examples. We also give a comparison
of advantages and disadvantages in this section.

2 Solving Laplace equations by two ap-
proaches

2.1 The first approach

2.1.1 The Laplace’s equation with Dirichlet
boundary conditions

Let us consider the Laplace equation{
∆u = 0 in Ω

u = g on ∂Ω
(3)

for the unknown function u ∈ H1(Ω) on the domain
Ω ⊂ Rd with Dirichlet boundary conditions given by
g ∈ H

1
2 (∂Ω).

In the sense of distribution, the fundamental solu-
tion is a solution of the first equation only in the entire
space and its form is

ϕ : Rd \ {0}, ϕ(x) =

{
− 1

2π log(|x|) for d = 2
1

(d−2)ωn|x|d−2 for d ≥ 3
.

Take n arbitrary boundary points x1, x2, . . . , xn ∈ ∂Ω
and m arbitrary points c1, c2, . . . , cm ∈ ΩC , which will
be called the outer points, see Figure 1. The funda-
mental solution at associated with the point cj in case
of d = 2 is

ϕcj (x) = − 1

2π
log(|x− cj |). (4)

We will approximate the solution of (3) as a linear
combination of the functions

{
ϕcj

}m
j=1

. This method

was first proposed in [12], whenever for its convergence
on an arbitrary domain still no rigorous proof was de-
veloped.

A main motivation of this approximation is the
fact that according to the theory of boundary inte-
gral equations [16], there is a unique function G ∈
H− 1

2 (∂Ω) such that

u(x) =

∫
∂Ω

ϕ0(x− y)G(y) dy. (5)

If this could be approximated with an appropriate
sum, we would get a sum of some terms ϕc∗j

. At the
same time, on the boundary point c∗j , the function ϕc∗j
becomes singular. Therefore, we rather choose instead
the outer point cj close to c∗j .

In any case, if we take more outer points, we can
enhance accuracy of the approximation. In concrete
terms, we are looking for the approximation

u(x) ≈
m∑
j=1

ajϕcj (x) (+constant) (6)

where the coefficients aj will be determined by the
boundary condition such that

m∑
j=1

ajϕcj (xi) ≈ g(xi). (7)

In the language of neural networks, we are looking
for the parameters a1, a2, . . . , am such that the cor-
responding linear mapping in (6) delivers a minimal
error in (7). Accordingly:

• The input of training data includes n vectors
of length m: (ϕc1(xi), · · · , ϕcm(xi)), where i =
1, · · · , n.

• The output of training data are boundary func-
tion at the point xi : g(xi), where i = 1, . . . , n).

• Weights in the most simply case (no hidden layer)
are aj and in the general case are components to
get aj .

• The loss function is least square loss with regular-
ization.

Using the gradient-based methods and tuning the pa-
rameters properly to minimize the mean squared error
we obtain the desired parameters a1, a2, . . . , am. This
model gives us the approximation of u at any inner
point, let say yk, then

u(yk) ≈
m∑
j=1

ajϕcj (yk).
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Figure 2: Neural network structure of the first ap-
proach

2.1.2 The Laplace’s equation with Neumann
boundary conditions

The general interior Neumann problem for
Laplace’s equation in Ω can be formulated as follows:{

∆u = 0 in Ω
∂u
∂n = fn on ∂Ω

(8)

where n is a unit outward normal vector to the
boundary ∂Ω and fn is a prescribed function defined
on the Lipschitz boundary ∂Ω of the domain Ω.

Again, we are looking for an approximation in form
(6). At the same time, we have to replace the Dirich-
let boundary conditions with Neumann type boundary
conditions such that we obtain

∂

∂n
u(xi) ≈

m∑
j=1

aj
∂

∂n
ϕcj (xi). (9)

Here using c = [c1, c2] for a generic outer point and
x = [x1, x2] for a generic inner point we have

∂

∂x1
ϕc(x) = − 1

2π

x1 − c1
(x1 − c1)2 + (x2 − c2)2

∂

∂x2
ϕc(x) = − 1

2π

x2 − c2
(x1 − c1)2 + (x2 − c2)2

.

Accordingly, the new neural network should be altered
in terms of the inputs and outputs as follows:

• Training data input includes vectors(
∂
∂nϕc1(xi), · · · , ∂

∂nϕcm(xi)
)

where i = 1, · · · , n.

• Training data output are boundary function at
the point xi : fn(xi) (i = 1, · · · , n).

After training, we obtain the weights in the approxi-
mation (6).
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Figure 3: Neural network structure of the second ap-
proach

2.1.3 The Laplace’s equation with mixed
boundary conditions

The equation (3) is said to satisfy a mixed boundary
condition if consisting ∂Ω of two disjoint parts, Γ1 and
Γ2, such that ∂Ω = Γ1∪Γ2, and u satisfies the following
equations:

u|Γ1
= g and

∂u

∂n

∣∣∣∣
Γ2

= f. (10)

In this case, the neural network is a combination of the
two networks above: the Dirichlet input-output train-
ing data is: (ϕc1(xi), · · · , ϕcm(xi)) and g(xi) where
xi ∈ Γ1 and the Neumann input-output training data
includes

(
∂
∂nϕc1(xi), · · · , ∂

∂nϕcm(xi)
)

and fn(xi) where
xi ∈ Γ2.

2.2 The second approach

2.2.1 The Laplace’s equation with Dirichlet
boundary conditions

We discuss another approach to design the neural
network which uses only the fundamental solutions as
learning data. Here, for each outer point cj ,

• The input of training data is a vector of length n:(
ϕcj (x1), · · · , ϕcj (xn)

)
.

• The output of training data is ϕcj (y) where y is
an interior point where we want to estimate the
solution.

Here we assume that fundamental solution at any inner
point can be written as linear combination of funda-



mental solution at boundary points as

ϕcj (y) ≈
n∑

i=1

biϕcj (xi). (11)

Using approximation (6), we get

u(y) ≈
m∑
j=1

ajϕcj (y)

≈
m∑
j=1

aj

n∑
i=1

biϕcj (xi) =

n∑
i=1

m∑
j=1

ajbiϕcj (xi)

≈
n∑

i=1

biu(xi).

Hence, the numerical solution at the inner point y can
be estimated by linear combination of this function at
the boundary points.

2.2.2 The Laplace’s equation with Neumann
boundary conditions

We assume that at the source point cj , the funda-
mental solution of the any points can be approximated
by a linear combination of derivative of fundamental
solution of the boundary points:

ϕcj (y) ≈
n∑

i=1

bi
∂

∂n
ϕcj (xi).

Using approximation (6), we get

u(y) ≈
m∑
j=1

ajϕcj (y)

≈
m∑
j=1

aj

n∑
i=1

bi
∂

∂n
ϕcj (xi) =

n∑
i=1

m∑
j=1

ajbi
∂

∂n
ϕcj (xi)

≈
n∑

i=1

bi
∂

∂n
u(xi).

Accordingly, the structure of neural network is the fol-
lowing:

• Training data input includes vectors(
∂
∂nϕcj (x1), · · · , ∂

∂nϕcj (xn)
)

where j = 1, · · · ,m.

• The output of training data is ϕcj (y) where y is
an inner point.

2.2.3 The Laplace’s equation with mixed
boundary conditions

Let us consider the mixed boundary value problem
with the conditions in (10). The second approach is
estimating the fundamental solution at an inner point

by both fundamental solution and derivative of funda-
mental solution at boundary points

ϕcj (y) ≈
∑

xi∈Γ1

biϕcj (xi) +
∑

x′
i∈Γ2

b′i
∂

∂n
ϕcj (x

′
i). (12)

Note that by the linearity of the original problems
(with any kind of boundary conditions), there should
be such parameters bi, b′i.

Using approximation (6) again, we get

u(y) ≈
∑

xi∈Γ1

biu(xi) +
∑

x′
i∈Γ2

b′i
∂

∂n
u(x′

i).

Hence, the output of training data in the second
method is always the fundamental solution ϕcj (y) and
the input data in mixed boundary problem is(

ϕcj (x1), · · · , ϕcj (xn),
∂

∂n
ϕcj (x

′
1), · · · ,

∂

∂n
ϕcj (x

′
n)

)
,

where x1, · · · , xn are boundary points generated on Γ1

and x′
1, · · · , x′

n are generated on Γ2.

3 Solving Helmholtz-typed equations
Let us consider the two types of boundary homoge-

neous Helmholtz-type equation, including the mono-
tone type {

∆2u− k21u = 0 on Ω
u|Γ1

= g and ∂u
∂n

∣∣
Γ2

= f.
(13)

and the oscillatory type{
∆2u+ k22u = 0 on Ω

u|Γ1
= g and ∂u

∂n

∣∣
Γ2

= f.
(14)

where Ω ⊂ Rn is an open set and ∂Ω consists of two
disjoint parts, Γ1 and Γ2, such that ∂Ω = Γ1 ∪ Γ2.
The fundamental solution of the modified
Helmholtz(13) and the original Helmholtz (14) is
given by (resp.)

ϕ−(x, y) =


1
2πK0(k1∥x− y∥) in 2D case
e−k1∥x−y∥

4π∥x− y∥
in 3D case

(15)

and

ϕ+(x, y) =


i
4H

(1)
0 (k2∥x− y∥) in 2D case
e−ik2∥x−y∥

4π∥x− y∥
in 3D case

(16)

where K0 is the modified Bessel function of the second
kind of order zero and H1

0 is Hankel function of the
first (See Appendix ..). In practice, the function u
is a real-valued function. Hence, we can assume the



fundamental solution of oscillatory typed problem is a
real value function, namely

ϕ+(x, y) =


−1
4 Y0(k2∥x− y∥) in 2D case

cos(−k2∥x− y∥)
4π∥x− y∥

in 3D case

(17)
where Y0 is the Bessel function of the second kind of
order zero kind of order zero.
Using the method of fundamental solution (MFS), we
estimate the solution as a data-dependent linear rep-
resentation

u(x) ≈
m∑
j=1

ajϕcj (x) (18)

where
From this, we construct the neural network design to
find the above coefficient from
the Dirichlet input-output training data is:
(ϕc1(xi), · · · , ϕcm(xi)) and g(xi) where xi ∈ Γ1

and the Neumann input-output training data in-
cludes

(
∂
∂nϕc1(xi), · · · , ∂

∂nϕcm(xi)
)

and fn(xi) where
xi ∈ Γ2.
the output of training data in the second method is
always the fundamental solution ϕcj (y) and the input
data in mixed boundary problem is(
ϕcj (x1), · · · , ϕcj (xn),

∂

∂n
ϕcj (x

′
1), · · · ,

∂

∂n
ϕcj (x

′
n)

)
,

where x1, · · · , xn are boundary points generated on Γ1

and x′
1, · · · , x′

n are generated on Γ2.

4 Convergence analysis
Katsurada and Okamoto ([9]), and Fairweather and

Karageorghis ([5]) gave an error bound for the Dirich-
let problem for the Laplace equation on the circle
(0, ρ), boundary function is analytical, solution is an-
alytically harmonic continuable to the whole plane:

∥u− uM∥L∞(Ω) ≤ C
( ρ

R

)M
(19)

where R is the radius of exterior circle. This shows
that the MFS is exponentially convergent with respect
to increasing M , or R.
Betcke ([2]) obtained the same results for Helmholtz
operator ∆ + k2I and Balakrishnan and Ramachan-
dran ([1]); Barnett and Betcke ([2]); Bogomolny ([3])
and for the modified Helmholtz operator ∆− k2I.
The estimate 19 was proved by Katsurada ([7], [8]) for
boundary domain is a circle and an analytical Jordan
curve, respectively.
In case u is not analytically continuable to the whole
plane, but rather only up to an extension B(0; r0)

Kitagawa ([10], [11]) proved:

∥u− uM∥L∞(Ω) ≤ ∥u∥L∞(∂B(0,r0))(
2

1− ρ
R

)[
(1 +A(R, p))

(
ρ

r0

)M/3

+ 4
( ρ

R

)M/3
]

where A(R, ρ) is some constant between 1 and 2. The
price to pay for this excellent exponential convergence
is that the condition number of the coefficient matrix
of the resulting MFS system of equations grows expo-
nentially with respect to M.

5 Numerical experiments
In this section, we dig deep into how these methods

work on specific problems, how to opt the position
of collocation points, source points and how to tune
parameters properly. In particular, we focus to the
following questions.

• What is the optimal number (or rather: the ratio)
of the boundary and outer points?

• What is the optimal distance of the outer points
from the boundary?

• What is the optimal distribution of the boundary
and outer points?

• Does the two approaches deliver similar accuracy?

• With an optimal choice of all parameters, which
convergence rate can be achieved?

• What is the setup and the parameters in a neural
network used in the computations?

5.1 Mixed boundary condition problem on
Amoeba-like domain

Let consider the Laplace equation 3 on the Amoeba-
like domain where the boundary points have the posi-
tion of(

esin θ sin2(2θ) + ecos θ cos2(2θ)
)
(cos θ, sin θ) .

The boundary conditions are given by the Dirichlet
boundary condition if 0 ≤ θ < π and the Neumann
boundary condition if that 0 ≤ θ < 2π such that
the analytical solution is u(x, y) = cos(x) cosh(y) +
sin(x) sinh(y). Figure 4 is obtained by running on 60
boundary points, 90 outer points, ϵ = 0.1 and 10000
epochs. We also implemented the second method on
this problem. Using 50 boundary points and 200 outer
points, ϵ = 0.1 with 90000 epochs, the result of some
points is showed in Table 1.



Figure 4: The analytical and numerical solution on
Amoeba-like domain

Collocation
points (0, 0) (1, 1) (−1, 1)

Analytical so-
lution 1 1.8226277 -0.155167

Numerical so-
lution 1.0056722 1.823955 -0.15932

Table 1: The numerical solution of some points on the
mixed boundary problem using the second approach

Figure 5: The outer and boundary points for example
1

5.2 Dirichlet boundary condition on the unit
square

Example 1. In a unit square Ω = {x, y | 0 < x <
1, 0 < y < 1} let us consider the following equation

∆u = 0 for (x, y) ∈ Ω

u(x, 0) = 0, u(x, 1) = sin(πx) for 0 < x < 1

u(0, y) = 0, u(1, y) = 0 for 0 < y < 1.

(20)

The analytical solution of this problem is:

u(x, y) =
1

eπ − e−π
sin(πx)

(
eπy − e−πy

)
.

Firstly, we implement the first method by choosing the
position of outer points on a square which is obtained
by a magnification of the unit square (see Figure 5).
We define the magnification factor ϵ as the distance
between two parallel sides of each square.
In Figure 6 (left figure), we use the following param-

eters: 32 boundary points, 8192 outer points, magni-
fication factor: ϵ = 0.1, learning rate = 0.1, epoch
=1000, 1 hidden layer with size of 100. Loss function
after training: 0.0003839250421151519.
The role of the number of boundary points and source

points is important. In Table 2, we run on different
values of n(the number of boundary points) and m
(the number of boundary points) with ϵ = 0.2. We
observe that the more outer points we generate, the
more accuracy we get for the Frobenius norm. The
number of outer points should exceed the number of
boundary points because it is easier to represent a few
boundary points by a linear combination of a lot of
fundamental solutions. If we choose more boundary
points, the loss function is not vanished because of
non-singularity when finding weight matrix, it leads
to the predicted vector has same all entries. But also
note that the solution we get after running a neural
network is not unique, so we may get results far away
from the true solution but have small losses. Luckily,
in this example, the divergence between the two solu-
tions are insignificant.



Figure 6: Analytical and Numerical solutions are
solved by the first approach (left) and the second ap-
proach (right) of example 1

The number of bound-
ary and outer points

Error (Frobenius
norm)

n = 16,m = 64 0.2461622809658327
n = 32,m = 64 0.3182853004347026
n = 32,m = 128 0.21974143048835057
n = 16,m = 128 0.18014076148115063
n = 16,m = 512 0.10919759728510069
n = 16,m = 2048 0.07990843843706859
n = 32,m = 8192 0.04762830527750495

Table 2: The effect of the number of boundary points
and outer points (the first approach)

The distance between two squares can change the er-
ror slightly, but the numerical solution is close to the
analytical solution in general. According to the Figure
7 (left), ϵ should be lies between 0.05 and 0.1 to get
optimal numerical solution. Increasing the number of
epochs will also decrease the error (see Figure 7 -right)
Now we turn into the second approach. We want to

plot the whole function in this example to compare it
to the first method. A heuristic solution is forming
the output of training data is a vector computing the
fundamental solution at grid points for an outer point.
However, in practice, we expect to get the value of ev-
ery grid points precisely, not only the network in gen-
eral. It requires the complexity of neural networks and
time to train the model. It is an obstacle when tuning
the parameters, so our technique is to train each point
in grid point separately until it closes to the analytical
solution at this point and then apply these parame-
ters to all other points. Figure 6(right) illustrates the
numerical solution of the second approach with 320
boundary points, 60 source points and ϵ = 0.025.
However, the purpose of using both approaches is not

to estimate every point on the domain. It measures
specified source points without using discretization on
this domain (i.e.the mesh-free method). In Table 3,
we use different values of (the number of boundary
points, the number of outer points). It shows that the
second method performs moderately well even though
the number of boundary points is smaller or larger or
equal to the number of outer points.

Similar to the first method, the loss decreases if
the auxiliary boundary is closer to the frontier(or ϵ
is smaller) which can be seen in Table 4.

5.3 Different neural networks and compar-
isons

Table 6 and 7 illustrates the results after imple-
menting in different set up of neural networks for both
methods. The more complex neural networks we use in
the first approach, the more accuracy we get with the



Collocation
points

True solu-
tion (100, 100) (400, 400) (1000, 1000) (1000, 100) (100, 1000)

(0.2, 0.2) 0.034124 0.03115696 0.0338244 0.03507766 0.03429693 0.03419725
(0.5, 0.5) 0.199268 0.2008082 0.20086792 0.20041794 0.19841382 0.19588123
(0.7, 0.7) 0.311947 0.3144576 0.3115651 0.3125463 0.3116747 0.3061932
(0.2, 0.7) 0.226643 0.22474924 0.22370611 0.22674346 0.22672111 0.2225104
(0.7, 0.2) 0.046969 0.04574379 0.04649694 0.04676051 0.04662241 0.04642019

Table 3: The different choices of the number of boundary points and outer points, ϵ = 0.15(the second approach)

Collocation points True solution ϵ = 0.1 ϵ = 0.15 ϵ = 0.2 ϵ = 0.025
(x, y) = (0.2, 0.2) 0.034124 0.0347167 0.03429693 0.03295259 0.03433963
(x, y) = (0.5, 0.5) 0.199268 0.19874202 0.19841382 0.2012808 0.19995686
(x, y) = (0.7, 0.7) 0.311947 0.3124724 0.3116747 0.3126797 0.3119331
(x, y) = (0.2, 0.7) 0.226643 0.22637717 0.22672111 0.22672312 0.2267626
(x, y) = (0.7, 0.2) 0.046969 0.04597505 0.04662241 0.04752169 0.04735678

Table 4: The different choices of magnification factor (the second approach), n = 1000,m = 100

Figure 7: The effect of ϵ and the number of epochs(the
first approach)

same number of epochs. But also note that if we use
complex neural networks, there are more unknown pa-
rameters that cost the computation time. For example
1, we recommend using the neural network with one
hidden layer of "small" size. The second approach,
otherwise, does not affect by the structure of neural
networks. We can achieve a reasonable good numer-
ical solution using a simple no hidden layer network
and increasing the number of epochs.
To sum up, both methods are required a large enough
number of outer points because both use the approx-
imation (6). In practice, if the number of exterior
points is more than 30 and the ratio between the num-
ber of boundary and outer points is small (<1), we will
get a "good" numerical solution. However, the sec-
ond approach also necessitates a large enough number
of boundary points to guarantee that the approxima-
tion (11) or (12) has a small error. It avoids the error
term from approximation (6) directly and works for
any ratio between the number of boundary and outer
points. Hence, the second method is applicable for the
problem which generating the equidistant outer points
ineffectively, while the first method is an incredible
estimation when the auxiliary domain is formed effec-
tively.
In a nutshell, with the optimal choice of all parame-
ters, both methods operate accurately with low error
on the "smooth" boundary curve (see Table 5).

5.4 The Helmholtz problem on the sphere

In the first example, the three-dimensional eigen-
value problem for the Laplace operator problem is se-
lected to divulge the competence of the proposed MFS.
The monotone typed Helmholtz is given with Dirichlet



Position of inner point Analytical solution Approach 2 Approach 1
(x, y) = (0.2, 0.2) 0.034124989219717516 0.03417236 0.03415351
(x, y) = (0.5, 0.5) 0.19926840766919335 0.1992962 0.19928508
(x, y) = (0.7, 0.7) 0.311947830115096 0.31381178 0.31188422
(x, y) = (0.2, 0.7) 0.22664336509760868 0.22663322 0.22663559
(x, y) = (0.7, 0.2) 0.04696901819829289 0.04670608 0.04691111

Table 5: The approximation of some interior points using both methods

Neural network Error
Linear Regression, no hidden layer, epochs = 1000 0.048206
Neural network, 1 hidden layer of size 100, epochs = 1000 0.026957
Neural network, 1 hidden layer of size 500, epochs = 1000 0.026286
Neural network, 2 hidden layers of size 100, epochs = 1000 0.022334
CNN with 2 fully connected layers, epochs = 10000 0.017556

Table 6: Different neural network structures for Example 1.
boundary conditions as follow{

∆2u− 3u = 0 on Ω
u(x, y, z) = sinh(x+ y + z) on ∂Ω

(21)

where Ω = {(x, y, z)|x2 + y2 + z2 < 1}.
Before injecting the training data into neural network
design, we consider the distribution on the boundary
and auxiliary boundary surface such that points are
evenly distributed. We list four common distributions
below.

a) The standard equiangular spherical coordinates
distribution forming N1 lines of latitude and N2

lines of longitude.

b) There are 6N2 + 6N + 2 points generated in the
sphere which has positions(
sin
( nπ
2N

)
sin

(
kπ

3n

)
, sin

( nπ
2N

)
cos

(
kπ

3n

)
, cos

( nπ
2N

))
where k = 1, · · · , 6n and n = 1, · · ·N .

c) The Fibonacci lattice is expressed as a sequence
of N points with coordinates

sin(kπ(3−
√
5))

√√√√1−

(
1−

(
k

N − 1

)2
)2

,

1−
(

k

N − 1

)2

,

cos(kπ(3−
√
5))

√√√√1−

(
1−

(
k

N − 1

)2
)2

where k runs from 0 to N − 1

d) (Golden spiral method)(
1− 2

k

N − 1

)
sin(kπ(1 +

√
5)),(

1− 2
k

N − 1

)
cos(kπ(1 +

√
5)),

±

√
1−

(
1− 2

k

N − 1

)2

where k = 0, · · · , N − 1

For comparison, we generate 256 = 16× 16 boundary
points and 1444 = 38×38 outer points for the standard
equiangular coordinates. For the (b) distribution, 254
(N = 6) points was created in boundary and 1442(N =
15) points in the pseudo-boundary. We both set 255
boundary points and 1443 outer points on Fibonacci
lattice and spiral distribution.
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