Neural networks for boundary value problems

Hoang Trung Hieu Supervisor: Izsák Ferenc

2021

- Methods of fundamental solution(MFS) with two approaches by neural network
- Convergence analysis of the MFS
- Numerical results
- Future works

Problem

$$\begin{cases} Lu = 0 & \text{on } \Omega\\ u|_{\Gamma_1} = g & \text{and} & \frac{\partial u}{\partial n}|_{\Gamma_2} = f. \end{cases}$$
(1)

where $\Omega \subset \mathbb{R}^n$ is an open set and $\partial \Omega$ consists of two disjoint parts, Γ_1 and Γ_2 , such that $\partial \Omega = \Gamma_1 \cup \Gamma_2$.

Definition

A fundamental solution to a linear differential operator L is a distribution E such that $L(E)=\delta$

Fundamental solution of Laplace operator

$$\phi_y(x) = \begin{cases} -\frac{1}{2\pi} \log(|x-y|) & \text{for } d=2\\ \frac{1}{(d-2)\omega_n \|x-y\|^{d-2}} & \text{for } d\geq 3 \end{cases}.$$

Method of fundamental solution

Figure: Inner, Boundary, Outer points

According to the single layer representation,

$$u(x) = \int_{\partial\Omega} \phi_y(x) \mathcal{G}(y) \, \mathrm{d}y.$$
(2)

If x are boundary point, $\phi_y(x)$ was not well-defined (singular integrals).

Hence auxiliary boundary Ω' was introduced

$$u(x) = \int_{\partial \Omega'} \phi_y(x) \mathcal{G}'(y) \, \mathrm{d}y$$

Discretizing the integrals, we get

$$u(x) \approx \sum_{j=1}^{m} a_j \phi_{c_j}(x) \tag{3}$$

Method of fundamental solution

The first approach

- Dirichlet typed input: $(\phi_{c_1}(x_i), \cdots, \phi_{c_m}(x_i))$ where $x_i \in \Gamma_1$ Neumann typed input : $(\frac{\partial}{\partial \mathbf{n}} \phi_{c_1}(x_i), \cdots, \frac{\partial}{\partial \mathbf{n}} \phi_{c_m}(x_i))$ where $x_i \in \Gamma_2$
- Dirichlet typed output : $g(x_i)$ where $x_i \in \Gamma_1$ Neumann typed output: $f_{\mathbf{n}}(x_i)$ where $x_i \in \Gamma_2$

The second approach

Input

$$(\phi_{c_j}(x_1), \cdots, \phi_{c_j}(x_n), \\ \frac{\partial}{\partial \mathbf{n}} \phi_{c_j}(x_1'), \cdots, \frac{\partial}{\partial \mathbf{n}} \phi_{c_j}(x_n'))$$

• Output $\phi_{c_j}(y)$

The first approach

- Dirichlet typed input: $(\phi_{c_1}(x_i), \cdots, \phi_{c_m}(x_i))$ where $x_i \in \Gamma_1$ Neumann typed input : $(\frac{\partial}{\partial \mathbf{n}} \phi_{c_1}(x_i), \cdots, \frac{\partial}{\partial \mathbf{n}} \phi_{c_m}(x_i))$ where $x_i \in \Gamma_2$
- Dirichlet typed output : $g(x_i)$ where $x_i \in \Gamma_1$ Neumann typed output: $f_{\mathbf{n}}(x_i)$ where $x_i \in \Gamma_2$

The second approach

Input

$$(\phi_{c_j}(x_1), \cdots, \phi_{c_j}(x_n), \\ \frac{\partial}{\partial \mathbf{n}} \phi_{c_j}(x'_1), \cdots, \frac{\partial}{\partial \mathbf{n}} \phi_{c_j}(x'_n))$$

• Output
$$\phi_{c_j}(y)$$

Convergence analysis of the MFS

(Katsurada and Okamoto ('96), and Fairweather and Karageorghis ('98)) For the Dirichlet problem for the Laplace equation on the circle $(0, \rho)$, boundary function is analytical, solution is analytically harmonic continuable to the whole plane:

$$\|u - u_M\|_{L^{\infty}(\Omega)} \le C \left(\frac{\rho}{R}\right)^M$$

(*Kitagawa ('88, '91)*)u is not analytically continuable to the whole plane, but rather only up to an extension $B(0; r_0)$

$$\|u - u_M\|_{L^{\infty}(\Omega)} \leq \|u\|_{L^{\infty}(\partial B(0,r_0))} \left(\frac{2}{1 - \frac{\rho}{R}}\right) \left[(1 + A(R,p)) \left(\frac{\rho}{r_0}\right)^{M/3} + 4 \left(\frac{\rho}{R}\right)^{M/3} \right]$$

where A(R,
ho) is some constant between 1 and 2.

Hoang Trung Hieu

Convergence analysis of the MFS

(Katsurada and Okamoto ('96), and Fairweather and Karageorghis ('98)) For the Dirichlet problem for the Laplace equation on the circle $(0, \rho)$, boundary function is analytical, solution is analytically harmonic continuable to the whole plane:

$$\|u - u_M\|_{L^{\infty}(\Omega)} \le C \left(\frac{\rho}{R}\right)^M$$

(*Kitagawa ('88, '91)*)u is not analytically continuable to the whole plane, but rather only up to an extension $B(0; r_0)$

$$\|u - u_M\|_{L^{\infty}(\Omega)} \le \|u\|_{L^{\infty}(\partial B(0,r_0))} \left(\frac{2}{1 - \frac{\rho}{R}}\right) \left[(1 + A(R,p)) \left(\frac{\rho}{r_0}\right)^{M/3} + 4 \left(\frac{\rho}{R}\right)^{M/3} \right]$$

where $A(R, \rho)$ is some constant between 1 and 2.

Hoang Trung Hieu

- What is the optimal **distribution** of the boundary and outer points?
- What is the optimal **distance** of the outer points from the boundary?
- What is the optimal number (or rather: the **ratio**) of the boundary and outer points?
- Does the two approaches deliver **similar accuracy**?
- With an optimal choice of all parameters, which **convergence rate** can be achieved?
- What is the setup and the parameters in a **neural network** used in the computations?

Example

$$\begin{cases} \Delta^2 u - 3u = 0 \quad \text{on } \Omega\\ u(x,y,z) = \sinh(x+y+z) \quad \text{on } \partial\Omega \end{cases}$$
 where $\Omega = \{(x,y,z) | x^2 + y^2 + z^2 < 1\}.$

Nodal distributions

Collocation points	Error(dis.1)	Error(dis.2)	Error(dis.3)	Error(dis.4)
(0.6, 0.6, 0.1)	-0.007686	0.002031	0.001083	-1.168*e-5
(0.3, 0.3, 0.3)	-0.021422	0.005856	0.002753	-0.000319
(0, 0, 0)	-0.028143	0.007756	0.003630	-0.000422
(6, .7,3)	-0.000238	0.000237	-0.000335	-0.000581

Table: Different nodal distribution leads to different error distribution

Example

Let us consider the Laplace equation on the Amoeba-like domain where the boundary points have the position of

$$\left(e^{\sin\theta}\sin^2(2\theta) + e^{\cos\theta}\cos^2(2\theta)\right)\left(\cos\theta,\sin\theta\right).$$

The boundary conditions are given by the Dirichlet boundary condition if $0 \le \theta < \pi$ and the Neumann boundary condition if that $0 \le \theta < 2\pi$ such that the analytical solution is

$$u(x,y) = \cos(x)\cosh(y) + \sin(x)\sinh(y)$$

Irregular domains

Figure: The analytical and numerical solution on Amoeba-like domain

Collocation points	(0, 0)	(1, 1)	(2,0)	(-1,1)
Analytical solution	1	1.822627	-0.416146	-0.155167
Numerical solution	1.0056722	1.823955	-0.437396	-0.15932

Table: The numerical solution of some points on the mixed boundary problem using the second approach.

Hoong	PULD OF	1011
TOATP		

Numerical results

Example

In a unit square Ω let us consider Laplace equation with Dirichlet boundary

$$\begin{cases} u(x,0) = 0, \ u(x,1) = \sin(\pi x) & \text{for } 0 < x < 1 \\ u(0,y) = 0, \ u(1,y) = 0 & \text{for } 0 < y < 1. \end{cases}$$
(4)

Figure: Numerical solutions are solved by the first approach (left) and the second approach (right) of example on the square

Distance between two surfaces

Figure: The effect of ϵ (the first approach)

The number of bound-	Error	(Frobenius
ary and outer points	norm)	
n = 16, m = 64	0.246162	22809658327
n = 32, m = 64	0.31828	53004347026
n = 32, m = 128	0.21974	143048835057
n = 16, m = 128	0.180140	076148115063
n = 16, m = 512	0.10919	759728510069
n = 16, m = 2048	0.079908	843843706859
n = 32, m = 8192	0.047628	830527750495

Table: The effect of the number of boundary points and outer points (the first approach)

CollocationTrue so-		(100 100)	(400,400)	(1000, 100)	(100, 1000)
points	lution	(100,100)	(400, 400)	(1000, 100)	(100, 1000)
(0.2, 0.2)	0.034124	0.031156	0.033824	0.0342969	0.0341972
(0.5, 0.5)	0.199268	0.200808	0.200867	0.1984138	0.1958812
(0.7, 0.7)	0.311947	0.314457	0.311565	0.311674	0.306193
(0.2, 0.7)	0.226643	0.224749	0.223706	0.2267211	0.222510
(0.7, 0.2)	0.046969	0.045743	0.046496	0.0466224	0.0464201

Table: The different choices of the number of boundary points and outer points, $\epsilon = 0.15$ (the second approach)

Neural network	Error
Linear Regression, no hidden layer, epochs $= 1000$	0.048206
Neural network, 1 hidden layer of size 100, epochs $= 1000$	0.026957
Neural network, 1 hidden layer of size 500, epochs $= 1000$	0.026286
Neural network, 2 hidden layers of size 100, epochs $=$ 1000	0.022334
CNN including convolution of 2 FC layers, epochs = 10000	0.017556

Table: Different neural network structures for example on the square.(the first approach)

- If the fundamental solution is not continuous? (E.g. The wave equation)
- If the equations do not have fundamental solutions?
- Error estimation on Sobolev space.
- Application on the acoustic problem.
- Application on moving boundary problem.

THANK YOU FOR YOUR ATTENTION!