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Problem {
Lu = 0 on Ω

u|Γ1
= g and ∂u

∂n

∣∣
Γ2

= f.
(1)

where Ω ⊂ Rn is an open set and ∂Ω consists of two disjoint parts,
Γ1 and Γ2, such that ∂Ω = Γ1 ∪ Γ2.

Definition

A fundamental solution to a linear differential operator L is a
distribution E such that L(E) = δ

Fundamental solution of Laplace operator

φy(x) =

{
− 1

2π log(|x− y|) for d = 2
1

(d−2)ωn‖x−y‖d−2 for d ≥ 3
.
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Method of fundamental solution

y2

Ω

y1

y3

c1

c2

cm

x1

x2

xn

Figure: Inner, Boundary, Outer points
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Method of fundamental solution

According to the single layer representation,

u(x) =

∫
∂Ω
φy(x)G(y) dy. (2)

If x are boundary point, φy(x) was not well-defined (singular
integrals).
Hence auxiliary boundary Ω′ was introduced

u(x) =

∫
∂Ω′

φy(x)G′(y) dy

Discretizing the integrals, we get

u(x) ≈
m∑
j=1

ajφcj (x) (3)
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Method of fundamental solution
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Method of fundamental solution

The first approach

Dirichlet typed input:
(φc1(xi), · · · , φcm(xi))
where xi ∈ Γ1

Neumann typed input :(
∂
∂nφc1(xi), · · · , ∂

∂nφcm(xi)
)

where xi ∈ Γ2

Dirichlet typed output :
g(xi) where xi ∈ Γ1

Neumann typed output:
fn(xi) where xi ∈ Γ2

The second approach

Input

(φcj (x1), · · · , φcj (xn),

∂

∂n
φcj (x

′
1), · · · , ∂

∂n
φcj (x

′
n))

Output φcj (y)
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Convergence analysis of the MFS

(Katsurada and Okamoto (’96), and Fairweather and Karageorghis
(’98)) For the Dirichlet problem for the Laplace equation on the
circle (0, ρ), boundary function is analytical, solution is analytically
harmonic continuable to the whole plane:

‖u− uM‖L∞(Ω) ≤ C
( ρ
R

)M
(Kitagawa (’88, ’91))u is not analytically continuable to the whole
plane, but rather only up to an extension B(0; r0)

‖u− uM‖L∞(Ω) ≤

‖u‖L∞(∂B(0,r0))

(
2

1− ρ
R

)[
(1 +A(R, p))

(
ρ

r0

)M/3

+ 4
( ρ
R

)M/3
]

where A(R, ρ) is some constant between 1 and 2.
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Numerical results

What is the optimal distribution of the boundary and outer
points?

What is the optimal distance of the outer points from the
boundary?

What is the optimal number (or rather: the ratio) of the
boundary and outer points?

Does the two approaches deliver similar accuracy?

With an optimal choice of all parameters, which convergence
rate can be achieved?

What is the setup and the parameters in a neural network
used in the computations?
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Nodal distribution

Example {
∆2u− 3u = 0 on Ω

u(x, y, z) = sinh(x+ y + z) on ∂Ω

where Ω = {(x, y, z)|x2 + y2 + z2 < 1}.
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Nodal distributions

Figure: Nodal distributions on the sphere
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Nodal distributions

Collocation
points

Error(dis.1) Error(dis.2) Error(dis.3) Error(dis.4)

(0.6, 0.6, 0.1) -0.007686 0.002031 0.001083 -1.168*e-5

(0.3, 0.3, 0.3) -0.021422 0.005856 0.002753 -0.000319

(0, 0, 0) -0.028143 0.007756 0.003630 -0.000422

(−.6, .7,−.3) -0.000238 0.000237 -0.000335 -0.000581

Table: Different nodal distribution leads to different error distribution
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Irregular domains

Example

Let us consider the Laplace equation on the Amoeba-like domain
where the boundary points have the position of(

esin θ sin2(2θ) + ecos θ cos2(2θ)
)

(cos θ, sin θ) .

The boundary conditions are given by the Dirichlet boundary
condition if 0 ≤ θ < π and the Neumann boundary condition if
that 0 ≤ θ < 2π such that the analytical solution is

u(x, y) = cos(x) cosh(y) + sin(x) sinh(y)
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Irregular domains

Figure: The analytical and numerical solution on Amoeba-like domain

Collocation points (0, 0) (1, 1) (2, 0) (−1, 1)

Analytical solution 1 1.822627 -0.416146 -0.155167

Numerical solution 1.0056722 1.823955 -0.437396 -0.15932

Table: The numerical solution of some points on the mixed boundary
problem using the second approach.
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Numerical results

Example

In a unit square Ω let us consider Laplace equation with Dirichlet
boundary{

u(x, 0) = 0, u(x, 1) = sin(πx) for 0 < x < 1

u(0, y) = 0, u(1, y) = 0 for 0 < y < 1.
(4)

Figure: Numerical solutions are solved by the first approach (left) and the
second approach (right) of example on the square
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Distance between two surfaces

Figure: The effect of ε (the first approach)
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The number of boundary and outer points

The number of bound-
ary and outer points

Error (Frobenius
norm)

n = 16,m = 64 0.2461622809658327

n = 32,m = 64 0.3182853004347026

n = 32,m = 128 0.21974143048835057

n = 16,m = 128 0.18014076148115063

n = 16,m = 512 0.10919759728510069

n = 16,m = 2048 0.07990843843706859

n = 32,m = 8192 0.04762830527750495

Table: The effect of the number of boundary points and outer points (the
first approach)
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The number of boundary and outer points

Collocation
points

True so-
lution

(100,100) (400, 400) (1000, 100) (100, 1000)

(0.2, 0.2) 0.034124 0.031156 0.033824 0.0342969 0.0341972

(0.5, 0.5) 0.199268 0.200808 0.200867 0.1984138 0.1958812

(0.7, 0.7) 0.311947 0.314457 0.311565 0.311674 0.306193

(0.2, 0.7) 0.226643 0.224749 0.223706 0.2267211 0.222510

(0.7, 0.2) 0.046969 0.045743 0.046496 0.0466224 0.0464201

Table: The different choices of the number of boundary points and outer
points, ε = 0.15(the second approach)
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Neural Networks Structures

Neural network Error

Linear Regression, no hidden layer, epochs = 1000 0.048206

Neural network, 1 hidden layer of size 100, epochs = 1000 0.026957

Neural network, 1 hidden layer of size 500, epochs = 1000 0.026286

Neural network, 2 hidden layers of size 100, epochs = 1000 0.022334

CNN including convolution of 2 FC layers, epochs = 10000 0.017556

Table: Different neural network structures for example on the square.(the
first approach)
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Future works

If the fundamental solution is not continuous? (E.g. The
wave equation)

If the equations do not have fundamental solutions?

Error estimation on Sobolev space.

Application on the acoustic problem.

Application on moving boundary problem.

....

....
THANK YOU FOR YOUR ATTENTION!
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