Micrometeorological data for Cnossos sound propagation model

Taki Eddine Djebbar Applied mathematics

Supervisor: Tamás Weidinger, ELTE Geography and Earth Sciences Institute, Department of Meteorology

Contents

- Noise pollution as an environmental problem CNOSSOS-EU
- Why important the meteorology for the noise propagation?
 Surface layer profiles (wind, temperature, stability)
 Souns speed profiles
 Estimation of sound speed profile parameters
- > Meteorological dataset
 - Statistical analysis Wind distribution
 - Sound speed profiles
- Case study
- **Future plans**

Noise Pollution

The WHO defines noise above 65 decibels (dB) as noise pollution, noise becomes harmful when it exceeds 75 decibels (dB) and is painful above 120 dB.

Causes of the noice pollution

> The important of the meteorology for the noise propagation

- Wind direction and profile
- Temperature and humidity profiles
- Atmospheric stability

Noice propagation

Fig 1: the sound propagation without wind in daytime

Fig 2: the sound propagation without wind in nighttime

Fig 3: the sound propagation with wind

The wind speed profile:

$$u(z) = \frac{u^*}{k} \left(2 * \ln\left(\frac{z}{z_0}\right) - \Psi_M(\frac{z}{L}) \right)$$

The correction value is given by:

The correction value of the temperature profile is given by:

$$\Psi_{H} = \begin{cases} 2 * \ln\left(\frac{1+x}{2}\right) + \ln\left(\frac{1+x^{2}}{2}\right) - \arctan(x) + \frac{\pi}{2} & for \ L < 0\\ -\frac{5z}{L} & for \ L > 0 \end{cases}$$

The temperature profile :

$$T(z) = T_0 + \frac{T^*}{k} \left(\ln\left(\frac{z}{z_0}\right) - \Psi_H(\frac{z}{L}) \right)$$

The correction value of the temperature profile is given by:

$$\Psi_{H} = \begin{cases} 2 * \ln\left(\frac{1+x}{2}\right) & \text{for } L < 0\\ -\frac{5z}{L} & \text{Where } x = \left(1 - \frac{16z}{L}\right)^{\frac{1}{4}} & \text{for } L > 0 \end{cases}$$

5

The sound speed profile :

$$c(z) = c_0 \sqrt{\frac{T(z)}{T_0}} + u(z)$$

The equation of noise propagation effected by all the meteorological data:

$$c(z) = A * \ln\left(1 + \frac{z}{z_0}\right) + Bz + c_0$$

the profile coefficients A and B can determined as During the daytime (stability classes S_1 , S_2 and S_3)

$$B = \frac{u^* \cos(\alpha)}{kL} + \frac{1}{2} \frac{c_0}{T_{ref}} \left(0.74 \frac{T^*}{kL} - \frac{g}{c_p} \right)$$

The nighttime: (stability classes S_4 , S_5)

$$B = 4.7 \frac{u^* \cos(\alpha)}{kL} + \frac{1}{2} \frac{c_0}{T_{ref}} \left(4.7 \frac{T^*}{kL} - \frac{g}{c_p} \right)$$

The coofficient A still the same during the whole day :

A=4.7
$$\frac{u^2 \cos(\alpha)}{kL} + \frac{1}{2} \frac{c_0}{T_{ref}} \left(4.7 \frac{T}{kL} \right)$$

25 stability classes (5 x 5)

A = -1 strong upwind

A = 0 crosswind (neutral)

A = +1 strong downwind

 $B = -0.12 \dots + 0.12$ From unstable to stble situations

No	A (m/s)	B (1/s)	0	10	20	 330	340	350
1	-1,00	-0,12						
2	-1,00	-0,12						
3	-1,00	-0,12						
4	-1,00	-0,12						
5	-1,00	-0,12						
6	-0,40	-0,04						
7	-0,40	-0,04						
8	-0,40	-0,04						
9	-0,40	-0,04						
10	-0,40	-0,04						
11	0,00	0,00						
12	0,00	0,00						
13	0,00	0,00						
14	0,00	0,00						
15	0,00	0,00						
16	0,40	0,04						
17	0,40	0,04						
18	0,40	0,04						
19	0,40	0,04						
20	0,40	0,04						
21	1,00	0,12						
22	1,00	0,12						
23	1,00	0,12						
24	1,00	0,12						

Contraction of sound speed profile types $(25 \rightarrow 2)$

Unstable and near neutral stratification (good situations)

$$\frac{\partial c}{\partial z} = A \cdot \frac{1}{z + z_0} + B < 0.07 \text{ (m/s)/m}$$

Stable stratification/downwind (bad situations for us)

$$\frac{\partial c}{\partial z} \ge 0.07 \text{ (m/s)/m}$$

where z = 4 m heigh, $z_0 = 10$ cm.

The sound level :

$$L_{LT} = 10 * \log\left(p \cdot 10^{\frac{L_F}{10}} + (1-p) \cdot 10^{\frac{L_H}{10}}\right)$$

 L_F : the sound level for near neutral and unstable stratifications (good situations) L_H : the sound level for homogen stratifications (bad situations) p: the probability of good situation

8

Thank you for your attention