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I. MOTIVATION

A Hidden Markov Model (HMM) could be viewed as a
noisy observation of a Markov chain. This model emerged
in the 1960s, and now it has important applications in signal
processing, control theory, and sequential bioinformatics. In
the HMM framework, there is a hidden Markov process that
influences the observations, but we cannot observe it directly.
Usually, the inference for this hidden process is the task
to solve, where the hidden process is our real process of
interest, such as a sequence of words in speech recognition or
different DNA regions in the DNA sequence. Any HMM has
a transition and an observation model. The observation model
tells us how the observations are generated from a hidden
state. It usually comes from a parametric family of probability
distributions, such as Gaussians or Categorical distributions
(but easily exchangeable for any other parametric family in
any state). However, the transition model also enables us to
have huge flexibility to build our a priori knowledge into
the model. Building these expert thoughts into the model
makes it more reasonable, more robust, and less prone to
error. One possible information is the residential time in each
state. This reformulation ends up in a fixed HMM model, but
we should usually rewrite the learning algorithm, which is
Expectation-Maximization (EM) in our case.

II. HIDDEN MARKOV MODELS

An HMM is a hidden process, a discrete zt ∈ {1, . . . , N}
Markov chain in discrete time, and an observation model
p(xt|zt). The joint distribution has the form

p(z1:T , x1:T ) = p(z1)

T∏
t=2

p(zt|zt−1)

T∏
t=1

p(xt|zt)

The start probabilities πi = p(z1 = i) is a probability
distribution on {1, . . . , N}.

The transition model Aij
.
= p(zt = j|zt−1 = i) is

independent of the time t. A is an N ×N matrix, also called
the transition matrix.

The observation model could represent discrete or
continuous distributions. In the discrete case the observation
model is a matrix of B, where Bkl = p(xt = l|zt = k)

for l = 1...L the categories and for i = 1...N the hidden
states. In the continuous case there is usually parameterized
family of distributions, such as Gaussians: p(xt|zt = k) =

N (xt|µk,Σk), where the conditional distribution has the
parameters µk and Σk.

The most basic inference tasks are filtering, smoothing, and
MAP estimation.

In filtering we want to compute (online) the αt(i) = p(zt =

i|x1:t) belief state and could be done by the forward algorithm.
The forward algorithm is a forward DP algorithm.

In smoothing we want to compute (offline) the γt(i) =

p(zt = i|x1:T ) given all the data and could be done by
the forward algorithm and the backward algorithm. In the
backward algorithm we compute βt(j) = p(xt+1:T |zt = j).
The backward algorithm is a backward DP, and then γt(j) ∝
αt(j)βt(j) could be get.

In learning, besides filtering and smoothing, computing
the two-slice marginals ξt,t+1(i, j) = p(zt = i, zt+1 =

j|x1:T ) is also essential. This could be done as ξt,t+1(i, j) ∝
αt(i)Aijβt+1(j)p(xt+1|zt+1 = j) from the already computed
α, β values.

The MAP (maximum a posteriori) estimation is the
computation of

argmax
z1:T

p(x1:T |z1:T )

This could be done with an offline, forward DP also known
as Viterbi decoding.

III. EM LEARNING IN HMM

Learning in HMM means we want to learn the starting
probabilities p(z1), the transition probabilities p(zt|zt−1) and
the parameters of the observation model.

Because of the usually unobservable hidden process, we
cannot maximize directly the likelihood function, therefore an
iterative approach called Expectation-Maximization is applied.

The idea of EM is the following. We usually want to
maximize the log likelihood of the observed data:

l(θ) =

T∑
t=1

log p(xt|θ) =
T∑

t=1

log
[∑

i

p(xt, zt = i|θ)
]

This is hard to optimize, therefore instead we maximize the
complete data log likelihood:

lc(θ) =

T∑
t=1

log p(xt, zt|θ)

This cannot be computed, since zt are unknown. Define the
expected complete data log likelihood as the following:

Q(θ, θn−1) = E
[
lc(θ)|x1:T , θ

n−1
]

Here, the zt are replaced with their expected value conditioned
on the data and the previous parameter set.

The idea of the EM is that since we do not know the actual
values of zt, starting from an initial guess of parameters,
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we can iteratively estimate zt with probabilities from the
parameters (and data), then estimate the parameters using the
zt estimates.

Algorithm 1: Expectation-Maximization (EM)
algorithm

Input : Observation sequence x1:T ,
initial parameters θ0

Output: Parameters θN

Until condition:
• E step: Compute Q(θ, θn−1) or the expected sufficient

statistics (for parameter update)
• M step:

θn = argmax
θ

Q(θ, θn−1)

The condition is usually on the amount of gain in the Q

function or the number of iterations.
Applying the EM algorithm for learning HMM parameters,

the complete data log likelihood is simply the log of the joint:

lc(θ) = log p(z1|θ) +
T∑

t=2

log p(zt|zt−1, θ) +

T∑
t=1

log p(xt|zt)

The E step involves the computation of the expected
sufficient statistics:

• γt(j) = p(zt = j|x1:T , θ
n−1)

• ξt−1,t(k, j) = p(zt−1 = k, zt = j|x1:T , θ
n−1)

The conditioning on θn−1 is simply that computing the γ and
ξ values on the HMM with parameters θn−1.

The M step involves constrained optimization, we want to
optimize in π, A and observation model parameters, but we
must ensure that

∑
i πi = 1 and πi ≥ 0, also that A is a

stochastic matrix, and a similar constraint could apply for the
model parameters.

In general case, fortunately, the optimization could be done
separately in π, Ai: for i = 1, . . . , N and observation model
parameters for hidden state i = 1, . . . , N .

The results are quite intuitive. Here the Categorical
distribution is presented.

• π̂i ∝ γ1(i)

• Âkj ∝
∑T

t=2 ξt−1,t(k, j)

• B̂kl ∝
∑T

t=1 γt(k)I(xt = l)

These are all expected counts on the corresponding events.
The EM algorithm in general finds a local optimum (with

certain assumptions) by increasing the likelihood at every EM
step. [1], [2]

The EM learning in the HMM framework is called the
Baum-Welch algorithm.

IV. GRAPH REPRESENTATION OF DISTRIBUTIONS

The notation p(v|u) for u, v (hidden) states is only the short
form of the time independent p(zt = v|zt−1 = u).

One main setback of HMMs is that in general, each
hidden state i has a duration Ti ∼ Geo(pi). The reason

is behind the graph structure of the Markov chain of zt
hidden states. The geometric distribution corresponds to the
most simple graph/flow: vertices are {r, v1, s}, edges are
{(r, v1), (v1, v1), (v1, s)} with p(v1|r) = 1, p(v1|v1) = p

and also p(s|v1) = 1 − p. The first arrival to the vertex s

would be always the question, starting from r at index 0,
but one could extend the graph with p(s|s) = 1 to ensure a
stochastic transition matrix and therefore a Markov chain (but
it does not matter on the computation). So given this graph,
the probability that the first arrival to s is at step d+ 1 is

P (inf{k : xk = s} = d+ 1) = (1− p)pd−1 = Geo(p)(d)

for the (x)k Markov chain starting from x0 = r. The duration
d ≥ 1, which refers to the same logic as in graphical models,
if we step into a state, we must spend 1 time-unit there (in
discrete time).

The generalization of the previous idea (representing
durations with graphs) is possible. The possible terms for
representation: graphs, flows, Markov chains are used here
interchangeably.

Formalizing the occurred concepts:

Definition 1. (Duration distribution)
Let X : Ω → N+ be random variable. Then T = p(X), the

distribution of X is a duration distribution.

The terms probability mass function and distribution would
be used interchangeably as long as the intention is clear.
Examples for duration distributions: geometric distribution,
categorical distribution on {1, . . . , D}, negative binomial
distribution. A mixture of duration distributions is also a
duration distribution. The Poisson distribution is not a duration
distribution, but if we truncate it to [1,∞) and normalize it (to
integrate to 1), we get a duration distribution (call it Poisson
duration distribution).

Definition 2. (Parametric family of duration distributions)
Let Θ be a parameter space. If for every θ ∈ Θ: X(θ) :

Ω → N+, then {T (θ) : θ ∈ Θ} = {p(X(θ)) : θ ∈ Θ} is a
parametric family of duration distributions.

Examples for parametric family of duration distributions:
geometric distributions with parameter p, categorical
distributions on {1, . . . , D} with parameters p1, . . . , pD,
negative binomial distributions with parameters N, p, negative
binomial distributions of fixed order N with parameter p,
Poisson duration distribution with parameter λ.

One could think of learning the probabilities of
self-transitions in the HMM framework as, given the
family of geometric distributions, we should learn p. That is,
similar to the observation models, a family is given. So, if the
duration comes from a geometric family, it is fine. But what
if we know that the duration comes from another family?
Such as Cat({1, . . . , D})?

It will be shown that some duration distribution families
could be represented as graphs, and in the next chapter, it
would be introduced that one could "merge" these graphs
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to form a "two-layer" HMM with state durations from
the desired family. There are more than one possible
representations, therefore we should measure the "efficiency"
of the representation.

Definition 3. (Representation graph)
A G(η) Markov chain is a representation graph if the

following hold:
1) r, v1, . . . , vn, s are the nodes
2) r is the starting node with probability 1
3) s is the ending node with probability 1
4) p(r|r) = 0, p(s|r) = 0, p(s|s) = 1

5) ∀i : p(r|vi) = 0

6) ∃i : p(s|vi) > 0

7) E(G) = Efix(G)∪̇Eprob(G), where the probabilites in
Efix are fixed 0s or 1s, and the probabilities in Eprob

are fully controlled by η
The indexing starts from 0 for a G(η) sample.
The number of steps taken in G(η) (or the duration) for a

sample is d, if the first arrival to s is at d+ 1.
Denote the distribution of duration from G(η) generated

samples with T [G(η)].
If we denote two representation graphs with G(η1) and

G(η2) it means that they have the same structure, only the
probabilities on the non-fixed edges could differ.

Formally, if x0, x1, . . . is a sample generated from the
Markov chain G(η) with x0 = r, then:

T [G(η)](d) = P (inf{k : xk = s} = d+ 1)

The first example of the geometic distribution is a G(p)

representation graph. Efix = {(r, v1)} and Eprob =

{(v1, v1), (v1, s)}. As we already observed, T [G(p)] =

Geo(p).

Definition 4. (Properties of a representation graph)
Let G(η) be a representation graph. Then:
• ein

.
= |{i : p(vi|r) ̸≡ 0}| the number of incoming edges

• eout
.
= |{i : p(s|vi) ̸≡ 0}| the number of outgoing edges

• e
.
= |{i, j : p(vj |vi) ̸≡ 0}| the number of inner edges

• n
.
= |V (G)| − 2 the number of nodes

• Vinn
.
= {v1, . . . , vn} the set of inner nodes

An edge (u, v) is p(v|u) ̸≡ 0 in this definition, if (u, v) ∈
Efix(G) with probability 1 or if (u, v) ∈ Eprob(G).

The geometric distribution representation graph G(p) has
the following edges number: ein = 1, eout = 1, e = 1. The
number of nodes is n(G(p)) = 1.

Definition 5. (Graph representation of duration distribution)
Let T be a duration distribution. Let G(η) be a

representation graph. G(η) represents T if T = T [G(η)].

Definition 6. (Graph representation of duration distribution
families)

Let T (θ) be a parametric family of duration distributions.
Let {G(η) : η ∈ H} be a family of representation graphs
based on the same structure and possibly different probability
values.

G represents T (θ) (the family) if

∀θ ∃η T (θ) = T [G(η)]

For example, the family of geometric distributions with
parameter p could be represented with the same graph structure
as at the beginning of the chapter, only with different η = p

values.
The main question is how other distribution families could

be represented with graphs.
Example: consider the representation graph G(p) with nodes

r, v1, v2, v3, s and with the following non-zero probabilities:
• p(v1|r) = 1

• p(v1|v1) = p

• p(v2|v1) = 1− p

• p(v2|v2) = p

• p(v3|v2) = 1− p

• p(v3|v3) = p

• p(s|v3) = 1− p

It is not hard to see, that G represents the family of negative
binomial distributions of fixed order 3. [2]

The following duration distribution families have a graph
representation: geometric family with parameter p, negative
binomial distributions of fixed order N with parameter
p, categorical distributions on {1, . . . , D} with parameters
p1, . . . , pD.

Statement 1. (Representation of geometric family)
The Geo(p) family could be represented by a G(p)

graph with nodes r, v1, s and with the following non-zero
probabilities:

• p(v1|r) = 1

• p(v1|v1) = p

• p(s|v1) = 1− p

Statement 2. (Representation of negative binomial family of
fixed order N )

The NegBinN (p) family could be represented by a G(p)

graph with nodes r, v1, . . . , vN , s and with the following
non-zero probabilities:

• p(v1|r) = 1

• p(vi|vi) = p for i = 1, . . . , N

• p(vi|vi−1) = 1− p for i = 2, . . . , N

• p(s|vN ) = 1− p

Statement 3. (Representation of categorical distributions on
{1, . . . , D})

The Cat({1, . . . , D}) family could be represented by a
G(p1, . . . , pD) graph. In the next chapter we will see 3
different graph representations for Cat{1, . . . , D}.

It is not hard to see that the mixture distributions could be
represented if all the individuals could be represented.

Statement 4. (Representation of mixture distributions)
Let the {Ti(θi) : θi ∈ Θi} family represented by a Gi(θi)

graph for i = 1, 2. Then the family {ρT1(θ1)+(1−ρ)T2(θ2) :

ρ ∈ [0, 1], θ1 ∈ Θ1, θ2 ∈ Θ2} could be represented by a graph
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G(ρ, θ1, θ2) with nodes r, Vinn(G1), Vinn(G2), s and with the
following non-zero probabilities:

• p(v1i |r) = ρ · pG1(θ1)(v
1
i |r) for v1i ∈ Vinn(G1)

• p(v2i |r) = (1− ρ) · pG2(θ2)(v
2
i |r) for v2i ∈ Vinn(G2)

• p(v1j |v1i ), p(s|v1i ) as in G1(θ1)

• p(v2j |v2i ), p(s|v2i ) as in G2(θ2)

Although, not every distribution family and not every
distribution could be represented.

Statement 5. (Non-representation of light-tailed distributions)
Let T a duration distribution with the following property:

lim sup
d→∞

T (d)

αd
= 0 ∀α > 0

Then there is no finite graph that could represent the
distribution T .

Statement 6. (Non-representation of Poisson duration
distributions)

Let T be one member of the Poisson duration distribution
family. Then T (d) = C λd

d! , therefore the previous statement
applies.

At the same time, approximate representation is possible to
any degree for any distribution.

Statement 7. (Approximate representation of distributions)
Let T be any duration distribution. Then:

∃D ∃S ∈ Cat({1, . . . , D}) : |S − T | < ϵ

Now S could be represented by a graph.

V. RESIDENTIAL TIME HMM

One could construct HMM-like models, that are aware of
time, different options could be found in [3]. The variants are
usually called Hidden Semi-Markov Model, Variable Duration
Hidden Markov Model, or Explicit Duration Hidden Markov
Model.

Each solution in the review of Yu introduces new graphical
models with "counter states", and does not try to capture
duration times inside the HMM framework.

The most simple solution from the review of Yu is the
residential time HMM (RT-HMM) which assumes that a state
transition is either (i, 1) → (j, τ) for j ̸= i or (i, τ) →
(i, τ − 1) where τ is the residential time of state i. [3], [4]

They provided the forward-backward algorithm for the
model, a modification of the HMM’s forward-backward
algorithm. The algorithm takes O((M2+MD)T ) steps, where
T is the length of the observation sequence, M is the number
of hidden states, D is the maximum residential time (or
maximum duration, the maximum steps allowed to be in one
state without transition).

Using the idea of representation graphs, a new aspect of the
previous result could be given, with a similar, but new model
and with a similar, but new learning algorithm which has the
same computational complexity as in Yu & Kobayashi [4].

Firstly a new, general definition of RT-HMM should be
established with the usage of representation graphs.

Definition 7. (Residential time HMM)
Let θ = (π,A, θo) is an HMM with M different hidden

states. π is the starting probability, A is the transition matrix
and θo is the observation parameter matrix.

For simplicity, we assume that Aii = 0 for all i.
Let Ti is a duration distribution for the hidden state i

represented with graph Gi(ηi). Ti comes from a duration
distribution family represented with Gi. Let

• Di = n(Gi)

• eiin = ein(Gi)

• ei = e(Gi)

• eiout = eout(Gi)

• ri = r(Gi) starting node
• si = s(Gi) ending node

These are independent of the values of ηi.
The residential time HMM (π̃, Ã, θ̃o) constructed from θ

and {Gi(ηi)} is the following (for i = 1, . . . ,M ):
• hidden states: id for d = 1, . . . , Di

• transition probabilities
– Ã(ik, il) = p(il|ik) for k, l = 1, . . . , Di

– Ã(ik, jl) = p(jl|ik) = p(si|ik)Aijp(jl|rj) for k =

1, . . . , Di for j = 1, . . . , Dj for j ̸= i

• starting probabilities π̃(i1) = π(i)

• observation model parameters θ̃o(ik) = θo(i) for k =

1, . . . , Di

If we want to build RT-HMM from an HMM with Aii > 0,
in the computation of Ã(ik, jl) we should work with Aij

1−Aii

instead of Aij .
The built RT-HMM has two layers of representation: a

lower-level representation with id, which forms a Markov
chain, aware of exactly where we are, and a higher-level
representation with i ↔ {i1, . . . , iDi

}, which corresponds to
the original hidden states, now with the desired residential
times.

The number of (non-zero) edges in a dense RT-HMM (when
the original HMM is complete) is:

E =

M∑
i=1

ei +

M∑
i=1

M∑
j=1
j ̸=i

eioute
j
in

The number of nodes is V =
∑M

i=1 Di. The number
of parameters in RT-HMM could be upper-bounded by
V (starting probabilities) + E (real transitions) + V L

(observation parameters).
If we assume that all Di = D are equal, and ei = O(D),

eiin = O(1) and eiout = O(1), then the number of nodes is
MD and the number of edges is O(MD+M2), which results
in a sparse graph if D ≫ M .

As we will show, with the number of (non-zero) edges
we could easily measure the computational complexity of the
parameter learning of a specific HMM.
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We advance the usefulness of the number of edges and
define measures of efficiency.

Definition 8. (Representation efficiency of RT-HMM)
Let θ = (π,A, θo) is an HMM and let Ti be duration

distributions represented with Gi graphs. The full efficiency
of representation is the number of edges in the resulting
RT-HMM:

E({Gi}, {Ti}, θ) =
M∑
i=1

ei +

M∑
i=1

M∑
j=1
j ̸=i

eioute
j
inI(Aij > 0)

Because we want to work with any HMM and the
representation mostly relies on representing Ti with Gi,
we could only observe the representation efficiency of the
complete graphs.

Definition 9. (Representation efficiency function)
Consider the complete M graph as the Markov chain of an

HMM. Let Ti be duration distributions represented with Gi

graphs. The efficiency-function of representation is E : N+ →
N+ defined by the following:

E({Gi}, {Ti})(M) =

M∑
i=1

ei +

M∑
i=1

M∑
j=1
j ̸=i

eioute
j
in

Now we can measure the goodness of representations
together. Next, we want to measure the efficiency of individual
representations. The motivation is the following: each Ti may
come from the same family, and it simplifies the following
thoughts. To succeed next we assume that every Ti is
represented with G(ηi), so the inner structure of the graph
is the same.

Definition 10. (Representation efficiency function of graphs)
Let {T (θ) : θ ∈ Θ} is a parametric family of duration

distributions. Let G is the representation graph of {T (θ)}.
The efficiency function of representation is the following:

E(G, {T (θ)})(M) = Me(G) +M(M − 1)eout(G)ein(G)

,
which is simply the narrowing of the previous definition to

the case of G represents all Ti.

Remember, that the geometric distribution representation
graph G(p) has the following edges number: ein = 1,
eout = 1, e = 1. Therefore the efficiency-function is
E(G(p), Geo(p))(M) = M + M(M − 1) = M2 which is
the number of edges in a complete HMM.

From the previous definition, it is clear that we want more
efficient representations for duration distribution families.

For example consider the family of categorical distributions
on {1, . . . , D} with parameters p1, . . . , pD. Here is the
construction of three different graphs G1, G2, G3 each of them
represents the family, but with different efficiency.

Let G1 has D + 2 nodes and has the following non-zero
probability transitions:

• p(vd|r) = pD+1−d for d = 1, . . . , D

• p(vd|vd−1) = 1 for d = 2, . . . , D

• p(s|vD) = 1

The efficiency is M(D − 1) + M(M − 1)D. This
representation comes from Yu & Kobayashi [4].

Let G2 has D + 2 nodes and has the following non-zero
probability transitions:

• p(v1|r) = 1

• p(vd|v1) = pD+2−d for d = 2, . . . , D

• p(vd|vd−1) = 1 for d = 3, . . . , D

• p(s|vD) = 1

• p(s|v1) = p1
The efficiency is M(2D − 3) +M(M − 1)2. This is more

efficient than G1 as long as M ≥ 2 and D ≥ 2.
Let G3 has 2 + 1 + 2 + . . .+D = D(D − 1)/2 + 2 nodes

(endowed with double index) and has the following non-zero
probability transitions:

• p(vd,1|r) = pd for d = 1, . . . , D

• p(vd,k|vd,k−1) = 1 for k = 2, . . . d for d = 1, . . . , D

• p(s|vd,d) = 1 for d = 1, . . . , D

The efficiency is M(D−1)(D−2)/2+M(M−1)D2. This
is the worst among the three.

The following statements tell us, that the second
representation is optimal.

Statement 8. (Optimal representation of categorical
distributions)

Let {T (θ) : θ ∈ Θ} is the family of categorical distributions
on {1, . . . , D}, with θ = (p1, . . . , pD). Let G represent this
family. Then

1) G has no circle
2) G has at least D nodes (besides r and s)
3) E(G, {T (θ)})(M) ≥ M(D − 1) +M(M − 1)

Thus, the second representation has efficiency O(MD +

M2) and the optimal efficiency is also O(MD +M2).

VI. LEARNING PARAMETERS OF RT-HMM

In the previous section, a new HMM variant was presented,
but because of its special properties, we must go through the
Baum-Welch algorithm to see what steps need to be updated.

As the model is still an HMM, the E-step and every related
computation could be done as before: α, β, γ, ξ. Also, the
Viterbi decoding could be done as before as well.

However, the M-step must be changed, because, from the
definition of RT-HMM, some parameters are tied between
states, therefore no individual update on states is allowed.

The starting probability update in M-step could be done as
before, or with zeroing on {π(id) : d > 1}.

The observation model parameters are tied for every
i, therefore one must sum up the statistics from across
{i1, . . . , iDi

}, then calculate an overall θo(i), finally assigns
this parameter to every state: θo(id) = θo(i).
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The update on the transition model parameters
is the most tricky, one must use the factorization
p(jl|ik) = p(si|ik)Aijp(jl|rj) in the log form:
log p(jl|ik) = log p(si|ik) + logAij + log p(jl|rj), and
group the members in the maximization of A to gain an
analytical update. Here the "parameters" learned cannot
be used directly in the model, one must use again the
factorization to get p̂(jl|ik) = p̂(si|ik)Âij p̂(jl|rj).

So, the reformulation of EM must be done, but (of course) it
could be used for learning. On the computational complexity:
in the simple HMM the E-step is O(M2T ), and the M-step
is O(T#{parameters}) = O(T (M +M2 +ML)), where L

is the number of parameters for p(xt|zt = i).
In the RT-HMM case, we must revisit the computational

complexity.
It is not hard to see, that the E-step could be done

in O(TE({Gi}, {Ti}, θ)) = O(T#{non-zero edges}) =

O(TE), and the M-step could be done in
O(T#{parameters}) = O(V L+ E).

Applying this to the optimal representation of categorical
distributions, we get back the result from Yu & Kobayashi,
the step-size of the forward-backward algorithm (and of the
E-step) is O(T (MD+M2)), and there is no faster way of this
computation using representation graphs. The M-step could be
done in O(T (M2+MDL)) steps, where it could be assumed
that L is a small constant.

In the reasoning, we used that if in the Baum-Welch
algorithm, we initialize Aij with 0, then it does not change
during the algorithm. Also the related ξt−1,t(i, j) marginals
would be 0 at every step, therefore we are allowed to skip the
fix-zero edges in the learning steps.
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