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Hidden Markov Models

A Hidden Markov Model (HMM) is a discrete-time, discrete Markov chain
zt ∈ {1, . . . ,N} with a parametric observation model p(xt |zt = j) for
j = 1, . . . ,N.

Observe the xt sequence and infer the zt hidden sequence. Match the
hidden states with the states of a real process.

Joint distribution:

p(z1:T , x1:T ) = p(z1)
T∏
t=2

p(zt |zt−1)
T∏
t=1

p(xt |zt)
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Start probabilities and observation model

Start probabilities πi = p(z1 = i), probability distribution on {1, . . . ,N}.

Observation model comes from a parametric family: e.g.

p(xt |zt = j) = N (xt |µj ,Σj)

or
p(xt |zt = j) = Cat(pj ,1, . . . , pj ,L)

Great flexibility on the observation generation.

László Keresztes (ELTE) Residential time HMM December 16, 2021 3 / 13



Transition model

Transition model: time independent N × N matrix

Aij
.
= p(zt = j |zt−1 = i)

Residential time in a hidden state Ti always has a geometric distribution.

Ti ∼ Geo(1− Aii )

Limited flexibility in the non-transition generation.
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HMM inference and learning

Inference and learning - computing the following:

αt(i) = p(zt = i |x1:t)
βt(j) = p(xt+1:T |zt = j)

γt(i) = p(zt = i |x1:T )
ξt,t+1(i , j) = p(zt = i , zt+1 = j |x1:T )

László Keresztes (ELTE) Residential time HMM December 16, 2021 5 / 13



EM learning in HMM

Expectation-Maximization algorithm is used for approximate ML
estimation by iteratively reestimating the hidden variables and the
parameters.

EM in HMM (Baum-Welch):

1 E-step - computing γt and ξt,t+1 values using previous parameters
2 M-step - update parameters (separately), e.g. for Categorical

observation model:

π̂i ∝ γ1(i)

Âkj ∝
∑T

t=2 ξt−1,t(k , j)

B̂kl ∝
∑T

t=1 γt(k)I(xt = l)
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Graph representation of distributions

Representation graph: the Markov-chain of the graph has a distribution T
on the first arrival to the ending (absorption) state.

The geometric family Geo(p) has the following representation:

Nodes: r , v1, s

Edges:

p(v1|r) = 1
p(v1|v1) = p
p(s|v1) = 1− p
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Results on representation graphs

Representative families:

geometric family with parameter p

negative binomial family of fixed order N with parameter p

categorical family on {1, . . . ,D}
mixture of representative families

Non-representative distributions:

light-tailed (lighter than exponential) distributions

truncated Poisson distribution
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Representing negative binomials

Example: consider the representation graph G (p) with nodes r , v1, v2, v3, s
and with the following non-zero probabilities:

p(v1|r) = 1

p(v1|v1) = p

p(v2|v1) = 1− p

p(v2|v2) = p

p(v3|v2) = 1− p

p(v3|v3) = p

p(s|v3) = 1− p

It is not hard to see, that G represents the family of negative binomial
distributions of fixed order 3.
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Residential time HMM

RT-HMM is HMM variant with counter states representing the residential
process in each state. With maximum duration D and number of hidden
states M the efficiency forward-backward variant takes O((M2 +MD)T )
time.

With representation graphs we can generalize, extend the concept of
RT-HMM while maintaining the efficiency to the categorical case,
meanwhile giving lower bound on the efficiency.
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RT-HMM from representation graphs

We can construct RT-HMM (as large HMM model) from the
representation graphs by connecting the entry and exit points properly.

Two level of representation:

lower level representation: id , Markov-chain

higher level representation: i ↔ {i1, . . . , iDi
}, original hidden states
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Learning the parameters of RT-HMM

By modifying the Baum-Welch algorithm to accept special parameter
tyings, it possible to learn the parameters.

Time complexity of steps remains (as in simple HMM):

E-step: O(T#{non-zero edges}) (including forward-backward)

M-step: O(T#{parameters})
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Efficiency of representation

Efficiency is defined as the number of non-zero edges in RT-HMM.
We can measure the efficiency of representing distribution families:

E (G , {T (θ)})(M) = Me(G ) +M(M − 1)eout(G )ein(G )

where

M is the number of hidden states

ein
.
= |{i : p(vi |r) ̸≡ 0}| the number of incoming edges

eout
.
= |{i : p(s|vi ) ̸≡ 0}| the number of outgoing edges

e
.
= |{i , j : p(vj |vi ) ̸≡ 0}| the number of inner edges

The main result: it is possible to represent the Cat({1, . . . ,D}) with
efficiency O(MD +M2), and it is optimal. It gives the same
O((M2 +MD)T ) on the forward-backward algorithm.
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