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The dynamics of infectious diseases show a wide diversity of patterns. By constructing epidemiological
models (with the help of mathematics) we can understand the dynamics and their qualitative characteristics
of different infectious diseases. Unfortunately, we live in times when the need for this knowledge is undisputed
(Malaria, COVID-19, etc.).

Epidemiological models can be categorized by their mathematical structures: deterministic or stochastic.
In deterministic models one of the most used are the compartmental models, where the dynamics of different
compartments are modeled by ordinary differential equations. Different compartments make it possible to ’het-
erogenize’ the population by its relationship to the disease, age, space, vaccination or lack thereof, etc.

In 2020, Yang and Wang proposed the following model to investigate the epidemic period of COVID-19 in
Wuhan from January 23, 2020 to February 10, 2020[1]:

dS

dt
= Λ− βESE − βISI − βV SV − µS

dE

dt
= βESE + βISI + βV SV − (α+ µ)E

dI

dt
= αE − (w + γ + µ)I

dR

dt
= γI − µR

dV

dt
= ξ1E + ξ2I − σV

(1)

Parameters
Λ Population influx
µ Natural death rate
w Disease induced death rate
1/α Mean incubation period
γ Recovery rate
βI Transmission rate by infected individual
βE Transmission rate by exposed individual
βV Transmission rate by the environmental reservoir
ξ1 Rate of the exposed individuals contributing

the virus to the environment
ξ2 Rate of the infected individuals contributing

the virus to the environment
σ Rate of (natural and artificial) removal of the virus

from the environment

where S, E, I, R are the number of susceptible, exposed (infectious but not yet symptomatic), infected (infec-
tious and symptomatic) and recovered, respectively. All the parameters are non-negative.

From system (1) it is easy to see that the core of the model is the usual SEIR model with variables (S,E,I,R)
and the main changes are the mass-action incidence βV SV in the compartment S and E and the new compart-
ment V with its own dynamics, namely, for larger E(t) and I(t) the derivative of V is larger at time t, while if V
is increasing, then its derivative is decreasing by factor σ. The reasoning to include the environmental reservoir
as a possible transmission route was that when officials took samples from the areas of the Huanan Seafood
Market it come back positive. Also, some studies suggest that the virus can survive on different surfaces such
as metal, glass, and plastic for up to 9 days. By fitting the outbreak data to the proposed model, they found
that the environmental reservoir had a significant contribution to the overall infection risk.

The disease-free equilibrium (DFE) can be obtained by setting all the derivatives of (1) and E, I, V equal
to zero (i.e., no infections in the population): E0 = (S0, E0, I0, R0, V0) = (Λµ , 0, 0, 0, 0). While the endemic

equilibrium(s) (EE) E = (Ŝ, Ê, Î, R̂, V̂ ) can be found by setting all the derivatives 0 in system (1) and solving
the system of equations. We can get the endemic equilibrium for the usual SEIR model by setting βV = 0. The
EE is larger in variables E, I, R, while smaller in S for the system (1) than for the usual (S,E,I,R) model.

The basic reproduction number R0 for a disease is the number of secondary infections produced by an in-
fected individual in a completely susceptible population (threshold parameter for invasion of a disease organism
into the population)[2]. We can compute R0 for a compartmental ODE system by the next generation approach,
which is the following[2].

The infection components for model (1) are E, I, V . Rewriting the model as:

x′
i = Fi(x, y)− Vi(x, y) i = 1, 2, 3

y′j = gj(x, y) j = 1, 2
(2)

where (x1, x2, x3) = (E, I, V ), (y1, y2) = (S,R) and

F =

βESE + βISI + βV SV
0
0

 , V =

 (α+ µ)E
−αE + (w + γ + µ)I
−ξ1E − ξ2I + σV


where Fi(x, y) represents the rate of new infection in compartment i, while Vi(x, y) incorporates the remaining
transitional terms. The Jacobi matrices of the subsystems F and V at the disease-free equilibrium (0, y0) =
(E0, I0, V0, S0, R0) = (0, 0, 0, Λ

µ , 0) are F = JF(X0) and V = JV(X0).

Linearizing system (2) at the DFE gives x′ = (F − V )x where the infected compartments x are decoupled
from the remaining equations, because for every pair (i, j):

∂Fi(0, y0)

∂yj
=

∂Vi(0, y0)

∂yj
= 0.
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The next generation matrix is defined as:

K = FV −1 =

βES0

α+µ + βIS0α
(α+µ)(w+γ+µ) +

βV S0(αξ2+(w+γ+µ)ξ1)
(α+µ)(w+γ+µ)σ

βIS0

w+γ+µ + βV S0ξ2
(w+γ+µ)σ

βV S0

σ

0 0 0
0 0 0

 (3)

which is an upper triangular matrix, so its spectral radius is

ρ(K) = R0 =
βES0

α+ µ
+

βIS0α

(α+ µ)(w + γ + µ)
+

βV S0(αξ2 + (w + γ + µ)ξ1)

(α+ µ)(w + γ + µ)σ

=: R1 +R2 +R3

(4)

For the usual SEIR model the infection components are E and I with DFE (0, y0) = (E0, I0, S0, R0) =
(0, 0, Λ

µ , 0) and the next generation matrix and its spectral radius is the same as (3) and (4) with βV = 0. So,
the basic reproduction number differs in one term between the two models. R1 and R2 can be interpreted
as the human-human transmissions while R3 is the human-environment transmission. To be precise, in both
cases R0 is the K1,1 entry, what can be interpreted as the expected number of secondary infections produced
in compartment E by an infected individual originally in compartment E[2]:

• R1 is the secondary infections from an exposed individual, because the incidence of the exposed is βES0E,
so one exposed individual causes βES0 number of secondary infections in a totally susceptible population
S0 per unit time. The exposed individual spends 1/(α+ µ) time in the exposed compartment.

• R2 is the number of the secondary infections of the initially exposed individual in his/her infectious stage
because the ratio α

α+µ is the fraction of individuals that progress from E to I and one infectious individual

causes βIS0

w+γ+µ secondary infections in his/her infectious stage.

• After rewriting R3 as βV S0ξ1
(α+µ)σ + βV S0αξ2

(α+µ)(w+γ+µ)σ we can see that it is the secondary infections by the

environment from the initially exposed individual. The first term is the fraction of initially exposed
individuals that progress to V through E ( ξ1

α+µ ) causing βV S0

σ number of new infections in 1
σ time. The

second term is the fraction of initially exposed individuals that progress to V through I ( α
α+µ

ξ2
w+γ+µ )

causing βV S0

σ number of new infections in 1
σ time. By setting βV = 0 this transmission route disappears.

From (4) we can see that R3 is a (convex) decreasing function of the virus removal rate from the environment µ,
while R3 is an increasing function of ξ1 and ξ2 (’transmission rates’ from exposed to the environment and from
infected to the environment, respectively). Because limσ→0 R0(σ) = ∞ and limσ→∞ R0(σ) = R0u = R1 +R2

we can see that σ can have a major effect on the dynamic of the epidemic. Because σ is interpreted as the
(natural and artificial) removal rate of the virus from the environment, we can think about it as a control
parameter.

Yang and Wang proved that the system (1) exhibits forward bifurcation[1]: if R0 < 1 then the only stable
point is the DFE, while for R0 > 1 the DFE is unstable and the EE is globally asymptotically stable (for
non-negative initial values). Their proof is valid for the ’core’ SEIR system too (usual SEIR system).

Because our system (1) is a biological system, we would except that the solutions are biologically reliable.
One aspect of this is that the region Ω = R5

+ is positively invariant (i.e., the solutions with initial conditions in
Ω stays in Ω for all t > 0). This can be proved by checking the sign of the derivatives at the boundary points. If
the trajectories are reflected back when they reach the boundary of Ω, then no solutions with initial conditions
in Ω can leave Ω. With this, the positive invariance of system (1) and for the usual SEIR model can be easily
checked.

Discussion, future directions

Our main goal for Math Project I. was (for me) to get familiar with the different aspects and techniques of
epidemiological modelling. For this, my main sources were [3] and [4]. I used these techniques to model (1) from
[1], mainly to compare it with the usual SEIR model, where the idea that infectious people can transmit the
disease to the environmental reservoir, from where susceptible people can get infected was not incorporated into
the model. For future directions, it would be interesting to check other models with the additional dynamics
of the environmental reservoir. For example for Lagrangian and Eulerian movement models, where the total
population occupies n regions with the possibility of movement from one region to another and all of the n
regions has their own disease dynamics. Also, we want to further study the parameters βb, xi1, xi2, σ from the
aspect of control. Also, we are interested in the numerical modeling aspect of these models (i.e. which properties
of the model are inherited after discretization). The discretization of the different continuous epidemiological
models are inevitable if we want to solve them numerically. For example, one property that the continuous
model (1) holds is the positive invariance, while it can be shown that for the discretized version for (1) by the
explicit Euler discretization does not inherit this property for all discretization-step (proof not shown). Another
property is the stability of the disease-free and endemic equalibriums for different discretization steps.
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