Numerical modelling of disease propagation

Szemenyei Adrián László

Math project I. presentation

Supervisor: Faragó István

December 17, 2021

Aim of the project -

- To get familiar with the different aspects and techniques of epidemiological modeling.
- compartmental deterministic models
- Use these methods to compare the "basic" SEIR and "SEIRV" models.
- How an additional compartment - a new transmission rate - changes the basics of the model.

For the latter my main sources were:
Martcheva, Maia. An introduction to mathematical epidemiology. Vol. 61. New York: Springer, 2015.
Capasso, Vincenzo. Mathematical structures of epidemic systems. Vol. 88. Berlin: Springer, 1993.

2020, Yang and Wang proposed the following compartmental model[1]:

$$
\begin{align*}
\frac{\mathrm{d} S}{\mathrm{~d} t} & =\Lambda-\beta_{E} S E-\beta_{I} S I-\beta_{V} S V-\mu S \\
\frac{\mathrm{~d} E}{\mathrm{~d} t} & =\beta_{E} S E+\beta_{I} S I+\beta_{V} S V-(\alpha+\mu) E \\
\frac{\mathrm{~d} I}{\mathrm{~d} t} & =\alpha E-(w+\gamma+\mu) I \tag{1}\\
\frac{\mathrm{~d} R}{\mathrm{~d} t} & =\gamma I-\mu R \\
\frac{\mathrm{~d} V}{\mathrm{~d} t} & =\xi_{1} E+\xi_{2} I-\sigma V
\end{align*}
$$

Parameters			
Λ	Population influx	ξ_{1}	Rate of the exposed individuals contributing
μ	Natural death rate		the virus to the environment
w	Disease induced death rate	ξ_{2}	Rate of the infected individuals contributing
1/ α	Mean incubation period		the virus to the environment
γ	Recovery rate	σ	Rate of (natural and artificial) removal of the
β_{I}	Transmission rate by infected individual		virus from the environment
β_{E}	Transmission rate by exposed individual		
β_{V}	Transmission rate by the environmental		
	Reasons for the new compartm		

Disease-free equilibrium (DFE)

- no infections in the population (derivatives and disease compartments zero)
- $\mathscr{E}_{0}=\left(S_{0}, E_{0}, I_{0}, R_{0}, V_{0}\right)=\left(\frac{\Lambda}{\mu}, 0,0,0,0\right)$

Endemic equilibrium (for the ususal SEIR $\beta_{V}=0$

$$
\begin{aligned}
& \hat{E}=\frac{\lambda}{\alpha+\mu}-\frac{\mu}{\beta_{E}+\frac{\alpha}{w_{1}} \beta_{I}+c \beta_{V}} \\
& \hat{I}=\frac{\Lambda \alpha}{w_{1}(\alpha+\mu)}-\frac{\alpha \mu}{w_{1}\left(\beta_{E}+\frac{\alpha}{w_{1}} \beta_{I}+c \beta_{V}\right)} \\
& \hat{R}=\frac{\gamma \alpha \Lambda}{\mu w_{1}(\alpha+\mu)}-\frac{\gamma \alpha}{w_{1}\left(\beta_{E}+\frac{\alpha}{w_{1}} \beta_{I}+c \beta_{V}\right)} \\
& \hat{V}=\frac{c}{\alpha+\mu}-\frac{c \mu}{\beta_{E}+\frac{\alpha}{w_{1}} \beta_{I}+c \beta_{v}} \\
& \hat{S}=\frac{\mu}{\beta_{E}+\frac{\alpha}{w_{1}} \beta_{I}+c \beta_{V}}
\end{aligned}
$$

where $c=\frac{w_{1} \xi_{1}+\xi_{2} \alpha}{\sigma w_{1}}$.

The basic reproduction number - $\mathcal{R}_{0}-\mathrm{I}$.

- Important measure of potential disease spread
- Number of secondary infections produced by an infected individual in a completely susceptible population
- can be computed by the next generation approach[2]

$$
\begin{align*}
& x_{i}^{\prime}=\mathcal{F}_{i}(x, y)-\mathcal{V}_{i}(x, y) \quad i=1,2,3 \\
& y_{j}^{\prime}=g_{j}(x, y) \quad j=1,2 \tag{2}\\
& \text { where }\left(x_{1}, x_{2}, x_{3}\right)=(E, I, V),\left(y_{1}, y_{2}\right)=(S, R) \\
& \mathcal{F}=\left(\begin{array}{c}
\beta_{E} S E+\beta_{I} S I+\beta_{V} S V \\
0 \\
0
\end{array}\right) \quad, \quad \mathcal{V}=\left(\begin{array}{c}
(\alpha+\mu) E \\
-\alpha E+(w+\gamma+\mu) I \\
-\xi_{1} E-\xi_{2} I+\sigma V
\end{array}\right)
\end{align*}
$$

The basic reproduction number - $\mathcal{R}_{0}-$ II.

- Linearizing the system at the DFE

$$
\left(0, y_{0}\right)=\left(E_{0}, I_{0}, V_{0}, S_{0}, R_{0}\right)=\left(0,0,0, \frac{\Lambda}{\mu}, 0\right)
$$

- Jacobi matrices $F=\mathbf{J} \mathcal{F}\left(X_{0}\right)$ and $V=\mathbf{J} \mathcal{V}\left(X_{0}\right)$
- for every pair (i, j) :

$$
\frac{\partial \mathcal{F}_{i}\left(0, y_{0}\right)}{\partial y_{j}}=\frac{\partial \mathcal{V}_{i}\left(0, y_{0}\right)}{\partial y_{j}}=0
$$

- Disease compartments x decouples from y variables \rightarrow

$$
\begin{equation*}
x^{\prime}=(F-V) x \tag{3}
\end{equation*}
$$

- for $F=0$ (no secondary infections): $x^{\prime}=-V x_{0}, \quad x(0)=x_{0}$

The basic reproduction number - \mathcal{R}_{0} - III.

Expected number of secondary infections produced by the index case:

$$
\begin{equation*}
F \int_{0}^{\infty} e^{-V t} x_{0} d t=F V^{-1} x_{0} \tag{4}
\end{equation*}
$$

- The next generation matrix is defined as:
- $\mathrm{K}=\mathrm{FV}^{-1}=\left(\begin{array}{cccc}\frac{\beta_{E} S_{0}}{\alpha+\mu}+\frac{\beta_{I} S_{0} \alpha}{(\alpha+\mu)(w+\gamma+\mu)}+\frac{\beta_{V} S_{0}\left(\alpha \xi_{2}+(w+\gamma+\mu) \xi_{1}\right)}{(\alpha+\mu)(w+\gamma+\mu) \sigma} & \frac{\beta_{I} S_{0}}{w+\gamma+\mu}+\frac{\beta_{V} S_{0} \xi_{2}}{(w+\gamma+\mu) \sigma} & \frac{\beta_{V} S_{0}}{\sigma} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
- $\rho(K)=\mathcal{R}_{0}=\frac{\beta_{E} S_{0}}{\alpha+\mu}+\frac{\beta_{I} S_{0} \alpha}{(\alpha+\mu)(w+\gamma+\mu)}+\left(\frac{\beta_{V} S_{0} \xi_{1}}{(\alpha+\mu) \sigma}+\frac{\beta_{V} S_{0} \alpha \xi_{2}}{(\alpha+\mu)(w+\gamma+\mu) \sigma}\right)$

$$
=: \mathcal{R}_{1}+\mathcal{R}_{2}+\mathcal{R}_{3}
$$

- nicely interpretable as the number of secondary infections from an initially exposed individual
- Usual SEIR model: $\beta_{V}=0$
- both systems exhibit forward bifurcation

Positive invariance

- We would except that the solutions are biologically reliable
- One aspect of this: $\Omega=\mathbb{R}_{+}^{5}$ is positively invariant
if $\quad S(\bar{t})=0$, then $\frac{\mathrm{d} S(\bar{t})}{\mathrm{d} t}=\Lambda \geq 0$
if $\quad E(\bar{t})=0$, then $\frac{\mathrm{d} E(\bar{t})}{\mathrm{d} t}=\beta_{I} S(\bar{t}) I(\bar{t})+\beta_{V} S(\bar{t}) V(\bar{t}) \geq 0$
if $\quad I(\bar{t})=0$, then $\frac{\mathrm{d} I(\bar{t})}{\mathrm{d} t}=\alpha E(\bar{t}) \geq 0$
if $\quad R(\bar{t})=0$, then $\frac{\mathrm{d} R(\bar{t})}{\mathrm{d} t}=\gamma I(\bar{t}) \geq 0$
if $\quad V(\bar{t})=0$, then $\frac{\mathrm{d} V(\bar{t})}{\mathrm{d} t}=\xi_{1} E(\bar{t})+\xi_{2} I(\bar{t}) \geq 0$

Discussion, future directions

- Check other models with the additional dynamics of the environmental reservoir (e.g. Lagrangian and Eulerian movement models).
- further study the parameters $\beta_{V}, \xi_{1}, \xi_{2}, \sigma$ from the aspect of control.
- numerical modeling aspect of these models (i.e. which properties of the model are inherited after discretization)
- for example positive invariance, stability

References I

[1]-Yang, Chayu, and Jin Wang. "A mathematical model for the novel coronavirus epidemic in Wuhan, China." Mathematical biosciences and engineering: MBE 17.3 (2020): 2708.
[2]-Van den Driessche, P., and James Watmough. "Further notes on the basic reproduction number." Mathematical epidemiology. Springer, Berlin, Heidelberg, 2008. 159-178.

