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1.The gradient method in Sobolev space:

Let Qc RN be a bounded domain
(f Dz =, fg (f.g €L’ () and let H = (L*(2),(.,.)12(n))-
We define a differential operator T with domain
domT = D = {ueH*(2): ujpq = %laﬂ = 0}
T(u) = div?(g(E(D*u))D?u) (ueD)
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Let g be real function that is €2 in the variable r, and there exist
M,m, A > 0 such that

Oo<m<glr)<M (r=0)

0<m<(@rdr) <M (r=0)
|%(§(r2)r <1 (r=0)

Finally let B :== A%,domB = D

(Throughout the report (4)? is considered as an L?(2) — L*(2)
operator with domain D.)

The following boundary value problem will be considered :

0%u (1)
Ujpe = 5~ lan =0

{ T(u) =«a

where aeL?(2) is given and u is the unknown function .

The equation (1) describes the elasto-plastic bending of a freely
supported thin plane 2 c R? under vertical force .

Theorem 1 (see [1]) : Consider the boundary value problem:

0%u (2)
Upe = 5 lan =0

{ T(w) =«



where T is defined as above, let a € L2(2) be arbitrary. Then problem (2)
admits a unique weak solution u* € H?(2) n H}(2) that is for all v €
H§ ()

1
Ef g(E(D*u))(D*u*.D?*v + Au*Av) = j av
0 0

holds. (If u*e D,then T(u") = a)
The operator F, defined by (F(u), v) on the left hand side satisfies
mlAllZz g < (F QDR R 20y < MRz (3)

Theorem 2 : (see [1]) Let uyeD be arbitrary. Then the following

sequence :
. 2
Un+1 = Un = 3 Zn (neN)
Az, = T(u,) —«a
where 922 (4)

Zjon = ﬁhm =0
converges to the solution u* and
M—-—m

1
—_ * < — T - . TL,

where 1, > 0 is the smallest eigenvalue of (4%) on D.

Remark : (a) Weak form of (4) :

j D?z,.D*v =1f g(E(D*u))(D*u.D?*v + AuAv) —J av (v € HZ())
0 2Jg 0

(b) From now a > 0 is constant .



2.The Gradient-Fourier method :

Let 2 = [0,7]%, A; and ey; (k,l = 1,2,...) denote the
eigenvalues and eigenfunctions of (4%) on D, respectively:
A = (kK2 +12)?%, e (x,y) = %sin(kx) sin(ly).

Let us first introduce some notations. Forn=0,1, ..., let
Uy = Uy
_ _ 2
Unt1 = Up — M+ mZn (neN)

where z, is the solution to the auxiliary equation (4) obtained by
the Fourier method

3.1. The Fourier method for the auxiliary equations :

Now let us focus on a single iteration step (i.e. n eN is fixed in
the section), where (4) is replaced by

Az, =T,
—  _%m . (5)
Zn|ag ~ vz |6!2 -

which now can be solved by a formula

Let ¢, (k, I = 1,2,...) be the coefficients of 7, in its Fourier series
expansion, that is

Cr,1 ‘=f Th €k,
0

Let N be a positive fixed integer and

N
h = Cr1€k,1
kl=1



i 7 - c
Define z,;,as 7z, = legl 1%

€kl
k,l

A simple calculation shows that these satisfy (5) :

N

AZZ= /1 (Azekl)_
ki=1 el

N N

A Aklekl C, 18kl =Tn
fe.l k,l=1
3.2 Calculation of the coefficients ¢ ;: Letu = u,

k=

Cr1 = j (T(w) — a)ey,
0
p— fﬂ divz(g(E(Dzu))ﬁzu)*ek,l —a*er

= f _((axz) + Zj; g; + (((3271:)2 + ( ou )2) * (Ezu.ﬁzek,l) -

dxdy
k
J, axex,

N N
azu ekl 2
J = EP) = Z dp1——- T2 z ;dklk sin(kx) sin(ly)

k,l=1

N N
0%u 0%ey 2
Y kl=1 =1 T

azu ekl
G = 323y = kZ dy. 3%y z —dy, klcos(kx) cos(ly)

d0%e 2
_ ax’;l =—= k2 sin(kx) sin(ly)

0%e 2
= ay;'l = —Elz Sln(kX) Sln(ly)




azekl 2
= = Z kI * cos(kx)cos(ly)

K = =
dxdy m

et = [ G2 4T E+ (B + (6D

’ *((]+%E>*Q+G*K+<E+%]>*M>_aek,l

Convergence :Apply Theorem 2 for the iteration in the Galerkin
subspace V;, = span {ey,}xi=1,..n

where the g(t) = , then m=0,51 and M=2,81 (see [2])

Conclusions :

We have run the iterative algorithm for the plate model with
constant force and for N=15. As examples, the first figure is the
iterate n=3 (left graph) and the other is for n=6 (right graph),
which show that the graphs are the shape of the deformed plate
under the vertical constant force a > 0.
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