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Abstract

Kalai and Kleitman [1] established the bound nlog(d)+2 for the diameter of a d-dimensional
polyhedron with n facets. Here we improve the bound slightly to nlog(d).

1 Introduction

A d-polyhedron P is a d-dimensional set in R
d that is the intersection of a finite number of

half-spaces of the form H := {x ∈ R
d : aTx ≤ β}. If P can be written as the intersection

of n half-spaces Hi, i = 1, . . . , n, but not fewer, we say it has n facets and these facets are
the faces Fi = P ∩Hi, i = 1, . . . , n, each linearly isomorphic to a (d− 1)-polyhedron with
at most n− 1 facets. We then call P a (d, n)-polyhedron.

We say v ∈ P is a vertex of P if there is a half-space H with P ∩ H = {v}. Two
vertices v and w of P are adjacent (and the set [v,w] := {(1 − λ)v + λw : 0 ≤ λ ≤ 1} an
edge of P ) if there is a half-space H with P ∩H = [v,w]. A path of length k from vertex v
to vertex w in P is a sequence v = v0, v1, . . . , vk = w of vertices with vi−1 and vi adjacent
for i = 1, . . . , k. The distance from v to w is the length of the shortest such path and is
denoted dP (v,w), and the diameter of P is the largest such distance,

δ(P ) := max{dP (v,w) : v and w vertices of P}.

We define
∆(d, n) := max{δ(P ) : P a (d, n)-polyhedron}

and seek an upper bound on ∆(d, n). It is not hard to see that ∆(d, ·) is monotonically
non-decreasing. Also, the maximum above can be attained by a simple polyhedron, one
where each vertex lies in exactly d facets. See, e.g., Klee and Kleinschmidt [2] or Ziegler
[3]. A related paper, Ziegler [4], gives the history of the Hirsch conjecture on ∆b(d, n),
defined as above but for bounded polyhedra.

∗School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853, USA.
E-mail mjt7@cornell.edu.

1

http://arxiv.org/abs/1402.3579v1


2 Result

We prove

Theorem 1 For 1 ≤ d ≤ n, ∆(d, n) ≤ dlog(n).

(All logarithms are to base 2; note that dlog(n) = nlog(d) as both have logarithm log(d) ·
log(n). We use this in the proof below.)

The key lemma is due to Kalai and Kleitman [1], and was used by them to prove the
bound nlog(d)+2. We give the proof for completeness.

Lemma 1 For 2 ≤ d ≤ ⌊n/2⌋, where ⌊n/2⌋ is the largest integer at most n/2,

∆(d, n) ≤ ∆(d− 1, n − 1) + 2∆(d, ⌊n/2⌋) + 2.

Proof: Let P be a simple (d, n)-polyhedron and v and w two vertices of P with
δP (v,w) = ∆(d, n). We show there is a path in P from v to w of length at most
the right-hand side above. If v and w both lie on the same facet, say F , of P , then
since F is linearly isomorphic to a (d − 1,m)-polyhedron with m ≤ n − 1, we have
dP (v,w) ≤ dF (v,w) ≤ ∆(d− 1,m) ≤ ∆(d− 1, n − 1) and we are done.

Otherwise, let kv be the largest k so that there is a set Fv of at most ⌊n/2⌋ facets with
all paths of length k from v meeting only facets in Fv. This exists since all paths of length
0 meet only d facets (those containing v), whereas paths of length δ(P ) can meet all n
facets of P . Define kw and Fw similarly. We claim that kv ≤ ∆(d, ⌊n/2⌋) and similarly
for kw. Indeed, let Pv ⊇ P be the (d,mv)-polyhedron (mv = |Fv | ≤ ⌊n/2⌋) defined by
just those linear inequalities corresponding to the facets in Fv. Consider any vertex t of
P a distance kv from v, so there is a shortest path from v to t of length kv meeting only
facets in Fv. But this is also a shortest path in Pv, since if there were a shorter path, it
could not be a path in P , and thus must meet a facet not in Fv, a contradiction. So

kv = δPv
(v, t) ≤ ∆(d,mv) ≤ ∆(d, ⌊n/2⌋).

Now consider the set Gv of facets that can be reached in at most kv + 1 steps from v,
and similarly Gw. Since both these sets contain more than ⌊n/2⌋ facets, there must be a
facet, say G, in both of them. Thus there are vertices t and u in G and paths of length
at most kv + 1 from v to t and of length at most kw + 1 from w to u. Then

∆(d, n) = dP (v,w)

≤ dP (v, t) + dG(t, u) + dP (w, u)

≤ kv + 1 +∆(d− 1, n− 1) + kw + 1

≤ ∆(d− 1, n− 1) + 2∆(d, ⌊n/2⌋) + 2,

since, as above, G is linearly isomorphic to a (d− 1,m)-polyhedron with m ≤ n− 1. ⊓⊔
Proof of the theorem: This is by induction on d + n. First, the right-hand side

gives 1 for d = 1, which is clearly a valid bound, and n for d = 2 which is an upper bound
on the true value of n− 2.

For d = 3, if n < 6 any two vertices lie on a common facet, so their distance is at most
∆(2, n − 1) = n− 3 < nlog(3). If n ≥ 6, we use the lemma to obtain

∆(3, n) ≤ ∆(2, n − 1) + 2 · 3log(⌊n/2⌋) + 2

≤ n− 3 + 2 · 3log(n)−1 + 2

= n− 1 +
2

3
· 3log(n) = n− 1 +

2

3
· nlog(3).
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Thus it suffices to show n− 1 ≤ 1
3n

log(3) for n ≥ 6, and this can be confirmed by looking
at the values at n = 6 and the derivatives for n ≥ 6. (In fact, ∆(3, n) = n− 3; see [2]. We
have chosen to give a self-contained argument.)

For d ≥ 4 and n < 2d, the result will follow by induction since any two vertices lie on a
common facet giving ∆(d, n) ≤ ∆(d−1, n−1). For d = 4 and n = 8, the distance between
any two vertices lying on a common facet will be at most ∆(3, 7) as above, while if v and
w lie on disjoint facets, any (bounded) edge from v leads to a vertex u on a common facet
with w, so the distance is at most 1 + ∆(3, 7), which again suffices. The only remaining
case is d ≥ 4, n ≥ 9. For this, log(n− 1) ≥ 3, so we have

∆(d, n) ≤ ∆(d− 1, n− 1) + 2 ·∆(d, ⌊n/2⌋) + 2

≤ (d− 1)log(n−1) + 2 · dlog(n)−1 + 2

=

(

d− 1

d

)log(n−1)

dlog(n−1) +
2

d
· dlog(n) + 2

≤

(

d− 1

d

)3

dlog(n) +
2

d
· dlog(n) + 2

≤ dlog(n) −
3

d
· dlog(n) +

3

d2
· dlog(n) −

1

d3
· dlog(n) +

2

d
· dlog(n) + 2

= dlog(n) −
1

d
· dlog(n) +

3

d2
· dlog(n) −

1

d3
· dlog(n) + 2

≤ dlog(n) −
1

d
· dlog(n) +

3

4d
· dlog(n) −

1

d3
· dlog(n) + 2

≤ dlog(n) −
1

4d
· dlog(n) −

1

d3
· dlog(n) + 2

≤ dlog(n),

since each of the subtracted terms is at least one. This completes the proof. ⊓⊔
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