arXiv:1402.3579v1 [math.OC] 14 Feb 2014

An improved Kalai-Kleitman bound for the diameter of a
polyhedron

Michael J. Todd *
November 30, 2019

Abstract

Kalai and Kleitman [1] established the bound n'°&(®+2 for the diameter of a d-dimensional
polyhedron with n facets. Here we improve the bound slightly to n'°8(®).

1 Introduction

A d-polyhedron P is a d-dimensional set in R¢ that is the intersection of a finite number of
half-spaces of the form H := {x € Re: Ty < B}. If P can be written as the intersection
of n half-spaces H;, i = 1,...,n, but not fewer, we say it has n facets and these facets are
the faces F; = PN H;, i = 1,...,n, each linearly isomorphic to a (d — 1)-polyhedron with
at most n — 1 facets. We then call P a (d,n)-polyhedron.

We say v € P is a vertex of P if there is a half-space H with PN H = {v}. Two
vertices v and w of P are adjacent (and the set [v,w] :={(1 —=ANv+Aw:0< A <1} an
edge of P) if there is a half-space H with PN H = [v,w]. A path of length k from vertex v
to vertex w in P is a sequence v = vy, v1, ...,V = w of vertices with v;_; and v; adjacent
for i =1,...,k. The distance from v to w is the length of the shortest such path and is
denoted dp(v,w), and the diameter of P is the largest such distance,

0(P) := max{dp(v,w) : v and w vertices of P}.

We define
A(d,n) := max{d(P) : P a (d,n)-polyhedron}

and seek an upper bound on A(d,n). It is not hard to see that A(d,-) is monotonically
non-decreasing. Also, the maximum above can be attained by a simple polyhedron, one
where each vertex lies in exactly d facets. See, e.g., Klee and Kleinschmidt [2] or Ziegler
[3]. A related paper, Ziegler [4], gives the history of the Hirsch conjecture on Ay(d,n),
defined as above but for bounded polyhedra.
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2 Result

We prove
Theorem 1 For1<d<mn, A(d,n) < dos(n)

(All logarithms are to base 2; note that d°8(®) = nlo&(d) a5 hoth have logarithm log(d) -
log(n). We use this in the proof below.)

The key lemma is due to Kalai and Kleitman [I], and was used by them to prove the
bound n!°8@+2 We give the proof for completeness.

Lemma 1 For 2 <d < |n/2|, where |n/2] is the largest integer at most n/2,
A(d,n) < A(d—1,n—1)+2A(d, |n/2]) + 2.

Proof: Let P be a simple (d,n)-polyhedron and v and w two vertices of P with
dp(v,w) = A(d,n). We show there is a path in P from v to w of length at most
the right-hand side above. If v and w both lie on the same facet, say F', of P, then
since F is linearly isomorphic to a (d — 1, m)-polyhedron with m < n — 1, we have
dp(v,w) < dp(v,w) < A(d—1,m) < A(d—1,n — 1) and we are done.

Otherwise, let k, be the largest k so that there is a set F,, of at most |n/2] facets with
all paths of length &k from v meeting only facets in JF,. This exists since all paths of length
0 meet only d facets (those containing v), whereas paths of length §(P) can meet all n
facets of P. Define k,, and F,, similarly. We claim that k, < A(d, [n/2]) and similarly
for k. Indeed, let P, O P be the (d, m,)-polyhedron (m, = |F,| < |n/2]) defined by
just those linear inequalities corresponding to the facets in F,. Consider any vertex ¢ of
P a distance k, from v, so there is a shortest path from v to ¢ of length k, meeting only
facets in JF,. But this is also a shortest path in P,, since if there were a shorter path, it
could not be a path in P, and thus must meet a facet not in F,, a contradiction. So

ko = 0p, (0,8) < Ald,my) < A(d, [n/2]).

Now consider the set G, of facets that can be reached in at most k, + 1 steps from v,
and similarly G,,. Since both these sets contain more than [n/2| facets, there must be a
facet, say G, in both of them. Thus there are vertices t and w in G and paths of length
at most k, + 1 from v to ¢t and of length at most k,, + 1 from w to u. Then

A(d,n) = dp(v,w)

dp(v,t) + dg(t,u) + dp(w,u)

ky +14+Ad—1,n—1)+k, +1
A(d—1,n—1)+2A(d, |n/2]) + 2,
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since, as above, G is linearly isomorphic to a (d — 1, m)-polyhedron with m <n—1. O
Proof of the theorem: This is by induction on d + n. First, the right-hand side
gives 1 for d = 1, which is clearly a valid bound, and n for d = 2 which is an upper bound
on the true value of n — 2.
For d = 3, if n < 6 any two vertices lie on a common facet, so their distance is at most
A(2,n —1) =n—3 < nleB) If n > 6, we use the lemma to obtain
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Thus it suffices to show n — 1 < %nlog(?’) for n > 6, and this can be confirmed by looking
at the values at n = 6 and the derivatives for n > 6. (In fact, A(3,n) =n — 3; see [2]. We
have chosen to give a self-contained argument.)

For d > 4 and n < 2d, the result will follow by induction since any two vertices lie on a
common facet giving A(d,n) < A(d—1,n—1). For d = 4 and n = 8, the distance between
any two vertices lying on a common facet will be at most A(3,7) as above, while if v and
w lie on disjoint facets, any (bounded) edge from v leads to a vertex u on a common facet
with w, so the distance is at most 1+ A(3,7), which again suffices. The only remaining
case is d > 4, n > 9. For this, log(n — 1) > 3, so we have

A(d,n) A(d—1,n—1)4+2-A(d, |n/2]) +2
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since each of the subtracted terms is at least one. This completes the proof. O
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