An improved Kalai-Kleitman bound for the diameter of a polyhedron

Michael J. Todd *

November 30, 2019

Abstract

Kalai and Kleitman [1] established the bound $n^{\log (d)+2}$ for the diameter of a d-dimensional polyhedron with n facets. Here we improve the bound slightly to $n^{\log (d)}$.

1 Introduction

A d-polyhedron P is a d-dimensional set in \mathbb{R}^{d} that is the intersection of a finite number of half-spaces of the form $H:=\left\{x \in \mathbb{R}^{d}: a^{T} x \leq \beta\right\}$. If P can be written as the intersection of n half-spaces $H_{i}, i=1, \ldots, n$, but not fewer, we say it has n facets and these facets are the faces $F_{i}=P \cap H_{i}, i=1, \ldots, n$, each linearly isomorphic to a $(d-1)$-polyhedron with at most $n-1$ facets. We then call P a (d, n)-polyhedron.

We say $v \in P$ is a vertex of P if there is a half-space H with $P \cap H=\{v\}$. Two vertices v and w of P are adjacent (and the set $[v, w]:=\{(1-\lambda) v+\lambda w: 0 \leq \lambda \leq 1\}$ an edge of P) if there is a half-space H with $P \cap H=[v, w]$. A path of length k from vertex v to vertex w in P is a sequence $v=v_{0}, v_{1}, \ldots, v_{k}=w$ of vertices with v_{i-1} and v_{i} adjacent for $i=1, \ldots, k$. The distance from v to w is the length of the shortest such path and is denoted $d_{P}(v, w)$, and the diameter of P is the largest such distance,

$$
\delta(P):=\max \left\{d_{P}(v, w): v \text { and } w \text { vertices of } P\right\} .
$$

We define

$$
\Delta(d, n):=\max \{\delta(P): P \text { a }(d, n) \text {-polyhedron }\}
$$

and seek an upper bound on $\Delta(d, n)$. It is not hard to see that $\Delta(d, \cdot)$ is monotonically non-decreasing. Also, the maximum above can be attained by a simple polyhedron, one where each vertex lies in exactly d facets. See, e.g., Klee and Kleinschmidt [2] or Ziegler [3]. A related paper, Ziegler 4], gives the history of the Hirsch conjecture on $\Delta_{b}(d, n)$, defined as above but for bounded polyhedra.

[^0]
2 Result

We prove
Theorem 1 For $1 \leq d \leq n, \Delta(d, n) \leq d^{\log (n)}$.
(All logarithms are to base 2; note that $d^{\log (n)}=n^{\log (d)}$ as both have logarithm $\log (d)$. $\log (n)$. We use this in the proof below.)

The key lemma is due to Kalai and Kleitman [1], and was used by them to prove the bound $n^{\log (d)+2}$. We give the proof for completeness.
Lemma 1 For $2 \leq d \leq\lfloor n / 2\rfloor$, where $\lfloor n / 2\rfloor$ is the largest integer at most $n / 2$,

$$
\Delta(d, n) \leq \Delta(d-1, n-1)+2 \Delta(d,\lfloor n / 2\rfloor)+2 .
$$

Proof: Let P be a simple (d, n)-polyhedron and v and w two vertices of P with $\delta_{P}(v, w)=\Delta(d, n)$. We show there is a path in P from v to w of length at most the right-hand side above. If v and w both lie on the same facet, say F, of P, then since F is linearly isomorphic to a $(d-1, m)$-polyhedron with $m \leq n-1$, we have $d_{P}(v, w) \leq d_{F}(v, w) \leq \Delta(d-1, m) \leq \Delta(d-1, n-1)$ and we are done.

Otherwise, let k_{v} be the largest k so that there is a set \mathcal{F}_{v} of at most $\lfloor n / 2\rfloor$ facets with all paths of length k from v meeting only facets in \mathcal{F}_{v}. This exists since all paths of length 0 meet only d facets (those containing v), whereas paths of length $\delta(P)$ can meet all n facets of P. Define k_{w} and \mathcal{F}_{w} similarly. We claim that $k_{v} \leq \Delta(d,\lfloor n / 2\rfloor)$ and similarly for k_{w}. Indeed, let $P_{v} \supseteq P$ be the (d, m_{v})-polyhedron ($m_{v}=\left|\mathcal{F}_{v}\right| \leq\lfloor n / 2\rfloor$) defined by just those linear inequalities corresponding to the facets in \mathcal{F}_{v}. Consider any vertex t of P a distance k_{v} from v, so there is a shortest path from v to t of length k_{v} meeting only facets in \mathcal{F}_{v}. But this is also a shortest path in P_{v}, since if there were a shorter path, it could not be a path in P, and thus must meet a facet not in \mathcal{F}_{v}, a contradiction. So

$$
k_{v}=\delta_{P_{v}}(v, t) \leq \Delta\left(d, m_{v}\right) \leq \Delta(d,\lfloor n / 2\rfloor) .
$$

Now consider the set \mathcal{G}_{v} of facets that can be reached in at most $k_{v}+1$ steps from v, and similarly \mathcal{G}_{w}. Since both these sets contain more than $\lfloor n / 2\rfloor$ facets, there must be a facet, say G, in both of them. Thus there are vertices t and u in G and paths of length at most $k_{v}+1$ from v to t and of length at most $k_{w}+1$ from w to u. Then

$$
\begin{aligned}
\Delta(d, n) & =d_{P}(v, w) \\
& \leq d_{P}(v, t)+d_{G}(t, u)+d_{P}(w, u) \\
& \leq k_{v}+1+\Delta(d-1, n-1)+k_{w}+1 \\
& \leq \Delta(d-1, n-1)+2 \Delta(d,\lfloor n / 2\rfloor)+2
\end{aligned}
$$

since, as above, G is linearly isomorphic to a $(d-1, m)$-polyhedron with $m \leq n-1$.
Proof of the theorem: This is by induction on $d+n$. First, the right-hand side gives 1 for $d=1$, which is clearly a valid bound, and n for $d=2$ which is an upper bound on the true value of $n-2$.

For $d=3$, if $n<6$ any two vertices lie on a common facet, so their distance is at most $\Delta(2, n-1)=n-3<n^{\log (3)}$. If $n \geq 6$, we use the lemma to obtain

$$
\begin{aligned}
\Delta(3, n) & \leq \Delta(2, n-1)+2 \cdot 3^{\log (\lfloor n / 2\rfloor)}+2 \\
& \leq n-3+2 \cdot 3^{\log (n)-1}+2 \\
& =n-1+\frac{2}{3} \cdot 3^{\log (n)}=n-1+\frac{2}{3} \cdot n^{\log (3)} .
\end{aligned}
$$

Thus it suffices to show $n-1 \leq \frac{1}{3} n^{\log (3)}$ for $n \geq 6$, and this can be confirmed by looking at the values at $n=6$ and the derivatives for $n \geq 6$. (In fact, $\Delta(3, n)=n-3$; see [2]. We have chosen to give a self-contained argument.)

For $d \geq 4$ and $n<2 d$, the result will follow by induction since any two vertices lie on a common facet giving $\Delta(d, n) \leq \Delta(d-1, n-1)$. For $d=4$ and $n=8$, the distance between any two vertices lying on a common facet will be at most $\Delta(3,7)$ as above, while if v and w lie on disjoint facets, any (bounded) edge from v leads to a vertex u on a common facet with w, so the distance is at most $1+\Delta(3,7)$, which again suffices. The only remaining case is $d \geq 4, n \geq 9$. For this, $\log (n-1) \geq 3$, so we have

$$
\begin{aligned}
\Delta(d, n) & \leq \Delta(d-1, n-1)+2 \cdot \Delta(d,\lfloor n / 2\rfloor)+2 \\
& \leq(d-1)^{\log (n-1)}+2 \cdot d^{\log (n)-1}+2 \\
& =\left(\frac{d-1}{d}\right)^{\log (n-1)} d^{\log (n-1)}+\frac{2}{d} \cdot d^{\log (n)}+2 \\
& \leq\left(\frac{d-1}{d}\right)^{3} d^{\log (n)}+\frac{2}{d} \cdot d^{\log (n)}+2 \\
& \leq d^{\log (n)}-\frac{3}{d} \cdot d^{\log (n)}+\frac{3}{d^{2}} \cdot d^{\log (n)}-\frac{1}{d^{3}} \cdot d^{\log (n)}+\frac{2}{d} \cdot d^{\log (n)}+2 \\
& =d^{\log (n)}-\frac{1}{d} \cdot d^{\log (n)}+\frac{3}{d^{2}} \cdot d^{\log (n)}-\frac{1}{d^{3}} \cdot d^{\log (n)}+2 \\
& \leq d^{\log (n)}-\frac{1}{d} \cdot d^{\log (n)}+\frac{3}{4 d} \cdot d^{\log (n)}-\frac{1}{d^{3}} \cdot d^{\log (n)}+2 \\
& \leq d^{\log (n)}-\frac{1}{4 d} \cdot d^{\log (n)}-\frac{1}{d^{3}} \cdot d^{\log (n)}+2 \\
& \leq d^{\log (n)},
\end{aligned}
$$

since each of the subtracted terms is at least one. This completes the proof.
Acknowledgement Thanks to Günter Ziegler for several helpful comments on a previous draft.

References

[1] G. Kalai and D.J. Kleitman, A quasi-polynomial bound for the diameter of graphs of polyhedra, Bulletin of the American Mathematical Society 26 (1992), 315-316.
[2] V. Klee and P. Kleinschmidt, The d-step conjecture and its relatives, Mathematics of Operations Research 12 (1987), 718-755.
[3] G. Ziegler, Lectures on Polytopes, Springer-Verlag, Berlin, 1995.
[4] G. Ziegler, Who solved the Hirsch conjecture? Documenta Mathematica Extra Volume: Optimization Stories (2012), 75-85.

[^0]: *School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853, USA. E-mail mjt7@cornell.edu.

