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Abstract. Kalai and Kleitman [6] established the bound nlog(d)+2 for the diameter of a d-dimensional polyhedron with n
facets. Here we improve the bound slightly to (n− d)log(d).

1. Introduction. A d-polyhedron P is a d-dimensional set in ℝd that is the intersection of a finite number of half-spaces
of the form H := {x ∈ ℝd : aT x ≤ �}. If P can be written as the intersection of n half-spaces Hi (with bounding hyperplanes H0

i ),
i = 1, . . . , n, but not fewer, we say it has n facets and these facets are the faces Fi = P ∩H0

i , i = 1, . . . , n, each affinely isomorphic
to a (d− 1)-polyhedron with at most n− 1 facets. We then call P a (d, n)-polyhedron.

We say v ∈ P is a vertex of P if there is a half-space H with P ∩ H = {v}. (A polyhedron is pointed if it has a vertex, or
equivalently, if it contains no line.) Two vertices v and w of P are adjacent (and the set [v, w] := {(1 − �)v + �w : 0 ≤ � ≤ 1}
an edge of P ) if there is a half-space H with P ∩ H = [v, w]. A path of length k from vertex v to vertex w in P is a sequence
v = v0, v1, . . . , vk = w of vertices with vi−1 and vi adjacent for i = 1, . . . , k. The distance from v to w is the length of the shortest
such path and is denoted �P (v, w), and the diameter of P is the largest such distance,

�(P ) := max{�P (v, w) : v and w vertices of P}.

We define

Δ(d, n) := max{�(P ) : P a (d, n)-polyhedron}

and seek an upper bound on Δ(d, n). It is not hard to see that Δ(d, ⋅) is monotonically non-decreasing. Also, the maximum above
can be attained by a simple polyhedron, one where each vertex lies in exactly d facets. See, e.g., Klee and Kleinschmidt [12] or
Ziegler [18].

In the last few years, there has been an explosion of papers related to the diameters of polyhedra and related set systems. Much
of this was inspired by Santos [14] finding a counterexample to the Hirsch conjecture that Δb(d, n) ≤ n−d, where Δb(d, n) is defined
as above but for bounded polyhedra; see also the refined counterexamples of Matschke, Santos, and Weibel [13]. Eisenbrand, Hähnle,
Razborov, and Rothvoss [3] showed that a slightly improved Kalai-Kleitman bound, nlog(d)+1, held for a very general class of set
families called base abstractions which assume only basic combinatorial properties of the vertices of d-polyhedra with n facets. These
and other combinatorial abstractions consist of a collection of d-subsets of an n-set, corresponding to the sets of facets containing
each vertex of a polyhedron, possibly with additional combinatorial structures; when we wish to highlight the dimensions, we add
the prefix (d, n). Base abstractions include the ultraconnected set families considered by Kalai [4] and the abstract polytopes of
Adler and Dantzig [1]; the latter satisfy the Hirsch conjecture for n − d ≤ 5. (The bound nlog(d)+1, for polyhedra, was presented
first in Kalai [5].) Another class of set families, subset partition graphs, was introduced by Kim [7]; adding various properties
gave families for which the bound held, or other families where the maximum diameter grew exponentially. This exponential lower
bound is due to Santos [15]. Another early combinatorial abstraction of polytopes consists of the duoids of [16, 17]. We also
mention the nice overview articles of Kim and Santos [8] (pre-counterexample) and De Loera [2], Santos [15], and Ziegler [18]
(post-counterexample).

Our bound (n − d)log(d) fits better with the Hirsch conjecture and is tight for dimensions 1 and 2. Also, more importantly,
it is invariant under linear programming duality. A pointed d-polyhedron with n facets can be written as {x ∈ ℝd : Ax ≤ b} for
some n× d matrix A of full rank and some n-vector b. Choosing an objective function cT x for c ∈ ℝd gives the linear programming
problem max{cT x : Ax ≤ b}, whose dual is min{bT y : AT y = c, y ≥ 0}. The feasible region for the latter is affinely isomorphic
to a pointed polyhedron of dimension at most n − d with at most n facets, and equality is possible. Hence duality switches the
dimensions d and n− d.

Our proof of the improved bound uses the same lemma as employed by Kalai and Kleitman, with a slightly tighter analysis
of the inductive step and the consideration of a number of low-dimensional cases. Hence the bound also applies to combinatorial
set systems generalizing polyhedra as long as these ingredients remain valid. While the lemma holds for the base abstractions
of Eisenbrand et al. (see the proof of Theorem 3.1 in [3]), that paper also contains in Section 2 a (2, 6)-base abstraction with
diameter 5, and so the improved bound fails. Similarly, Theorem 7.1 of [16] shows that the diameters of (3, n)-duoids grow at least
quadratically with n, showing that this combinatorial abstraction also fails to satisfy the improved bound. We do not know the
situation for ultraconnected set families or abstract polytopes, both of which satisfy the lemma.

2. Result. We prove
Theorem 2.1. For 1 ≤ d ≤ n, Δ(d, n) ≤ (n− d)log(d), with Δ(1, 1) = 0.

(All logarithms are to base 2; note that (n− d)log(d) = dlog(n−d), for 1 < d < n, as both have logarithm log(d) ⋅ log(n− d). We use
this in the proof below.)

The key lemma is due to Kalai and Kleitman [6], and was used by them to prove the bound nlog(d)+2. We give the proof for
completeness.

Lemma 2.2. For 2 ≤ d ≤ ⌊n/2⌋, where ⌊n/2⌋ is the largest integer at most n/2,

Δ(d, n) ≤ Δ(d− 1, n− 1) + 2Δ(d, ⌊n/2⌋) + 2.

Proof. Let P be a simple (d, n)-polyhedron and v and w two vertices of P with �P (v, w) = Δ(d, n). We show there is a path
in P from v to w of length at most the right-hand side above. If v and w both lie on the same facet, say F , of P , then since F is

∗ School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853, USA. E-mail
mjt7@cornell.edu.

1



affinely isomorphic to a (d− 1,m)-polyhedron with m ≤ n− 1, we have �P (v, w) ≤ �F (v, w) ≤ Δ(d− 1,m) ≤ Δ(d− 1, n− 1) and
we are done.

Otherwise, let kv be the largest k so that there is a set ℱv of at most ⌊n/2⌋ facets with all paths of length k from v meeting
only facets in ℱv . This exists since all paths of length 0 meet only d facets (those containing v), whereas paths of length �(P ) can
meet all n facets of P . Define kw and ℱw similarly. We claim that kv ≤ Δ(d, ⌊n/2⌋) and similarly for kw. Indeed, let Pv ⊇ P be
the (d,mv)-polyhedron (mv = ∣ℱv ∣ ≤ ⌊n/2⌋) defined by just those linear inequalities corresponding to the facets in ℱv . Consider
any vertex t of P a distance kv from v, so there is a shortest path from v to t of length kv meeting only facets in ℱv . But this is
also a shortest path in Pv , since if there were a shorter path, it could not be a path in P , and thus must meet a facet not in ℱv , a
contradiction. So

kv = �Pv (v, t) ≤ Δ(d,mv) ≤ Δ(d, ⌊n/2⌋).

Now consider the set Gv of facets that can be reached in at most kv + 1 steps from v, and similarly Gw. Since both these sets
contain more than ⌊n/2⌋ facets, there must be a facet, say G, in both of them. Thus there are vertices t and u in G and paths of
length at most kv + 1 from v to t and of length at most kw + 1 from w to u. Then

Δ(d, n) = �P (v, w)

≤ �P (v, t) + �G(t, u) + �P (w, u)

≤ kv + 1 + Δ(d− 1, n− 1) + kw + 1

≤ Δ(d− 1, n− 1) + 2Δ(d, ⌊n/2⌋) + 2,

since, as above, G is affinely isomorphic to a (d− 1,m)-polyhedron with m ≤ n− 1. ⊓⊔
Proof of the theorem: This is by induction on d + n. The result is trivial for n = d, since there can be only one vertex.

Next, the right-hand side gives 1 for d = 1 (n = 2) and n−2 for d = 2, which are the correct values. For d = 3, it gives (n−3)log(3),
which is greater than the correct value n − 3 established by Klee [9, 10, 11]. (We could make the proof more self-contained by
establishing the d = 3 case from the lemma: a general argument deals with n ≥ 13, but then there are seven more special cases
to check.) Below we will give a general inductive step for the case d ≥ 4, n − d ≥ 8. Also, the result clearly holds by induction if
n < 2d, since then any two vertices lie on a common facet, so their distance is at most Δ(d − 1, n − 1). The remaining cases are
d = 4, 8 ≤ n ≤ 11; d = 5, 10 ≤ n ≤ 12; d = 6, 12 ≤ n ≤ 13; and d = 7, n = 14. All these cases can be checked easily using the
lemma, the equation Δ(d, d) = 0, and the equations Δ(5, 6) = Δ(4, 5) = Δ(3, 4) = Δ(2, 3) = 1.

Now we deal with the case d ≥ 4, n− d ≥ 8. For this, log(n− d) ≥ 3, so we have

Δ(d, n) ≤ Δ(d− 1, n− 1) + 2 ⋅Δ(d, ⌊n/2⌋) + 2

≤ (d− 1)log(n−d) + 2 ⋅ dlog(n/2−d) + 2

≤
(
d− 1

d

)log(n−d)

dlog(n−d) + 2 ⋅ dlog((n−d)/2) + 2

≤
(
d− 1

d

)3

dlog(n−d) +
2

d
⋅ dlog(n−d) + 2

=

(
1−

3

d
+

3

d2
−

1

d3
+

2

d

)
dlog(n−d) + 2

≤
(

1−
1

d
+

3

4d
−

1

d3

)
dlog(n−d) + 2

≤ dlog(n−d) −
1

4d
⋅ dlog(n−d) −

1

d3
⋅ dlog(n−d) + 2

≤ dlog(n−d),

since each of the subtracted terms is at least one. This completes the proof. ⊓⊔
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